Whakaoti mō x (complex solution)
x=-3+2\sqrt{7}i\approx -3+5.291502622i
x=-2\sqrt{7}i-3\approx -3-5.291502622i
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+6x+37=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{6^{2}-4\times 37}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 6 mō b, me 37 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 37}}{2}
Pūrua 6.
x=\frac{-6±\sqrt{36-148}}{2}
Whakareatia -4 ki te 37.
x=\frac{-6±\sqrt{-112}}{2}
Tāpiri 36 ki te -148.
x=\frac{-6±4\sqrt{7}i}{2}
Tuhia te pūtakerua o te -112.
x=\frac{-6+4\sqrt{7}i}{2}
Nā, me whakaoti te whārite x=\frac{-6±4\sqrt{7}i}{2} ina he tāpiri te ±. Tāpiri -6 ki te 4i\sqrt{7}.
x=-3+2\sqrt{7}i
Whakawehe -6+4i\sqrt{7} ki te 2.
x=\frac{-4\sqrt{7}i-6}{2}
Nā, me whakaoti te whārite x=\frac{-6±4\sqrt{7}i}{2} ina he tango te ±. Tango 4i\sqrt{7} mai i -6.
x=-2\sqrt{7}i-3
Whakawehe -6-4i\sqrt{7} ki te 2.
x=-3+2\sqrt{7}i x=-2\sqrt{7}i-3
Kua oti te whārite te whakatau.
x^{2}+6x+37=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+6x+37-37=-37
Me tango 37 mai i ngā taha e rua o te whārite.
x^{2}+6x=-37
Mā te tango i te 37 i a ia ake anō ka toe ko te 0.
x^{2}+6x+3^{2}=-37+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+6x+9=-37+9
Pūrua 3.
x^{2}+6x+9=-28
Tāpiri -37 ki te 9.
\left(x+3\right)^{2}=-28
Tauwehea x^{2}+6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{-28}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+3=2\sqrt{7}i x+3=-2\sqrt{7}i
Whakarūnātia.
x=-3+2\sqrt{7}i x=-2\sqrt{7}i-3
Me tango 3 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}