Whakaoti mō x
x=-9
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=5 ab=-36
Hei whakaoti i te whārite, whakatauwehea te x^{2}+5x-36 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,36 -2,18 -3,12 -4,9 -6,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
Tātaihia te tapeke mō ia takirua.
a=-4 b=9
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(x-4\right)\left(x+9\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=4 x=-9
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x+9=0.
a+b=5 ab=1\left(-36\right)=-36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-36. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,36 -2,18 -3,12 -4,9 -6,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
Tātaihia te tapeke mō ia takirua.
a=-4 b=9
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(x^{2}-4x\right)+\left(9x-36\right)
Tuhia anō te x^{2}+5x-36 hei \left(x^{2}-4x\right)+\left(9x-36\right).
x\left(x-4\right)+9\left(x-4\right)
Tauwehea te x i te tuatahi me te 9 i te rōpū tuarua.
\left(x-4\right)\left(x+9\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=-9
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x+9=0.
x^{2}+5x-36=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-5±\sqrt{5^{2}-4\left(-36\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 5 mō b, me -36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-36\right)}}{2}
Pūrua 5.
x=\frac{-5±\sqrt{25+144}}{2}
Whakareatia -4 ki te -36.
x=\frac{-5±\sqrt{169}}{2}
Tāpiri 25 ki te 144.
x=\frac{-5±13}{2}
Tuhia te pūtakerua o te 169.
x=\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{-5±13}{2} ina he tāpiri te ±. Tāpiri -5 ki te 13.
x=4
Whakawehe 8 ki te 2.
x=-\frac{18}{2}
Nā, me whakaoti te whārite x=\frac{-5±13}{2} ina he tango te ±. Tango 13 mai i -5.
x=-9
Whakawehe -18 ki te 2.
x=4 x=-9
Kua oti te whārite te whakatau.
x^{2}+5x-36=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+5x-36-\left(-36\right)=-\left(-36\right)
Me tāpiri 36 ki ngā taha e rua o te whārite.
x^{2}+5x=-\left(-36\right)
Mā te tango i te -36 i a ia ake anō ka toe ko te 0.
x^{2}+5x=36
Tango -36 mai i 0.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=36+\left(\frac{5}{2}\right)^{2}
Whakawehea te 5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{2}. Nā, tāpiria te pūrua o te \frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+5x+\frac{25}{4}=36+\frac{25}{4}
Pūruatia \frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+5x+\frac{25}{4}=\frac{169}{4}
Tāpiri 36 ki te \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{169}{4}
Tauwehea x^{2}+5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{2}=\frac{13}{2} x+\frac{5}{2}=-\frac{13}{2}
Whakarūnātia.
x=4 x=-9
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}