x ^ { 2 } + 5 x - 14 \quad \text { 2 } \quad 3 x ^ { 2 } + 20 x + 25
Aromātai
25+25x-83x^{2}
Tauwehe
-83\left(x-\frac{25-5\sqrt{357}}{166}\right)\left(x-\frac{5\sqrt{357}+25}{166}\right)
Graph
Pātaitai
5 raruraru e ōrite ana ki:
x ^ { 2 } + 5 x - 14 \quad \text { 2 } \quad 3 x ^ { 2 } + 20 x + 25
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+5x-28\times 3x^{2}+20x+25
Whakareatia te 14 ki te 2, ka 28.
x^{2}+5x-84x^{2}+20x+25
Whakareatia te 28 ki te 3, ka 84.
-83x^{2}+5x+20x+25
Pahekotia te x^{2} me -84x^{2}, ka -83x^{2}.
-83x^{2}+25x+25
Pahekotia te 5x me 20x, ka 25x.
factor(x^{2}+5x-28\times 3x^{2}+20x+25)
Whakareatia te 14 ki te 2, ka 28.
factor(x^{2}+5x-84x^{2}+20x+25)
Whakareatia te 28 ki te 3, ka 84.
factor(-83x^{2}+5x+20x+25)
Pahekotia te x^{2} me -84x^{2}, ka -83x^{2}.
factor(-83x^{2}+25x+25)
Pahekotia te 5x me 20x, ka 25x.
-83x^{2}+25x+25=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-25±\sqrt{25^{2}-4\left(-83\right)\times 25}}{2\left(-83\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-25±\sqrt{625-4\left(-83\right)\times 25}}{2\left(-83\right)}
Pūrua 25.
x=\frac{-25±\sqrt{625+332\times 25}}{2\left(-83\right)}
Whakareatia -4 ki te -83.
x=\frac{-25±\sqrt{625+8300}}{2\left(-83\right)}
Whakareatia 332 ki te 25.
x=\frac{-25±\sqrt{8925}}{2\left(-83\right)}
Tāpiri 625 ki te 8300.
x=\frac{-25±5\sqrt{357}}{2\left(-83\right)}
Tuhia te pūtakerua o te 8925.
x=\frac{-25±5\sqrt{357}}{-166}
Whakareatia 2 ki te -83.
x=\frac{5\sqrt{357}-25}{-166}
Nā, me whakaoti te whārite x=\frac{-25±5\sqrt{357}}{-166} ina he tāpiri te ±. Tāpiri -25 ki te 5\sqrt{357}.
x=\frac{25-5\sqrt{357}}{166}
Whakawehe -25+5\sqrt{357} ki te -166.
x=\frac{-5\sqrt{357}-25}{-166}
Nā, me whakaoti te whārite x=\frac{-25±5\sqrt{357}}{-166} ina he tango te ±. Tango 5\sqrt{357} mai i -25.
x=\frac{5\sqrt{357}+25}{166}
Whakawehe -25-5\sqrt{357} ki te -166.
-83x^{2}+25x+25=-83\left(x-\frac{25-5\sqrt{357}}{166}\right)\left(x-\frac{5\sqrt{357}+25}{166}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{25-5\sqrt{357}}{166} mō te x_{1} me te \frac{25+5\sqrt{357}}{166} mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}