Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+5x=-3
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}+5x-\left(-3\right)=-3-\left(-3\right)
Me tāpiri 3 ki ngā taha e rua o te whārite.
x^{2}+5x-\left(-3\right)=0
Mā te tango i te -3 i a ia ake anō ka toe ko te 0.
x^{2}+5x+3=0
Tango -3 mai i 0.
x=\frac{-5±\sqrt{5^{2}-4\times 3}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 5 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 3}}{2}
Pūrua 5.
x=\frac{-5±\sqrt{25-12}}{2}
Whakareatia -4 ki te 3.
x=\frac{-5±\sqrt{13}}{2}
Tāpiri 25 ki te -12.
x=\frac{\sqrt{13}-5}{2}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{13}}{2} ina he tāpiri te ±. Tāpiri -5 ki te \sqrt{13}.
x=\frac{-\sqrt{13}-5}{2}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{13}}{2} ina he tango te ±. Tango \sqrt{13} mai i -5.
x=\frac{\sqrt{13}-5}{2} x=\frac{-\sqrt{13}-5}{2}
Kua oti te whārite te whakatau.
x^{2}+5x=-3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-3+\left(\frac{5}{2}\right)^{2}
Whakawehea te 5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{2}. Nā, tāpiria te pūrua o te \frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+5x+\frac{25}{4}=-3+\frac{25}{4}
Pūruatia \frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+5x+\frac{25}{4}=\frac{13}{4}
Tāpiri -3 ki te \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{13}{4}
Tauwehea x^{2}+5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{2}=\frac{\sqrt{13}}{2} x+\frac{5}{2}=-\frac{\sqrt{13}}{2}
Whakarūnātia.
x=\frac{\sqrt{13}-5}{2} x=\frac{-\sqrt{13}-5}{2}
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.