Whakaoti mō x
x=-7
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+5x+\frac{25}{4}-\frac{81}{4}=0
Tangohia te \frac{81}{4} mai i ngā taha e rua.
x^{2}+5x-14=0
Tangohia te \frac{81}{4} i te \frac{25}{4}, ka -14.
a+b=5 ab=-14
Hei whakaoti i te whārite, whakatauwehea te x^{2}+5x-14 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,14 -2,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -14.
-1+14=13 -2+7=5
Tātaihia te tapeke mō ia takirua.
a=-2 b=7
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(x-2\right)\left(x+7\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=2 x=-7
Hei kimi otinga whārite, me whakaoti te x-2=0 me te x+7=0.
x^{2}+5x+\frac{25}{4}-\frac{81}{4}=0
Tangohia te \frac{81}{4} mai i ngā taha e rua.
x^{2}+5x-14=0
Tangohia te \frac{81}{4} i te \frac{25}{4}, ka -14.
a+b=5 ab=1\left(-14\right)=-14
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-14. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,14 -2,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -14.
-1+14=13 -2+7=5
Tātaihia te tapeke mō ia takirua.
a=-2 b=7
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(x^{2}-2x\right)+\left(7x-14\right)
Tuhia anō te x^{2}+5x-14 hei \left(x^{2}-2x\right)+\left(7x-14\right).
x\left(x-2\right)+7\left(x-2\right)
Tauwehea te x i te tuatahi me te 7 i te rōpū tuarua.
\left(x-2\right)\left(x+7\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-7
Hei kimi otinga whārite, me whakaoti te x-2=0 me te x+7=0.
x^{2}+5x+\frac{25}{4}=\frac{81}{4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}+5x+\frac{25}{4}-\frac{81}{4}=\frac{81}{4}-\frac{81}{4}
Me tango \frac{81}{4} mai i ngā taha e rua o te whārite.
x^{2}+5x+\frac{25}{4}-\frac{81}{4}=0
Mā te tango i te \frac{81}{4} i a ia ake anō ka toe ko te 0.
x^{2}+5x-14=0
Tango \frac{81}{4} mai i \frac{25}{4} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-5±\sqrt{5^{2}-4\left(-14\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 5 mō b, me -14 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-14\right)}}{2}
Pūrua 5.
x=\frac{-5±\sqrt{25+56}}{2}
Whakareatia -4 ki te -14.
x=\frac{-5±\sqrt{81}}{2}
Tāpiri 25 ki te 56.
x=\frac{-5±9}{2}
Tuhia te pūtakerua o te 81.
x=\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{-5±9}{2} ina he tāpiri te ±. Tāpiri -5 ki te 9.
x=2
Whakawehe 4 ki te 2.
x=-\frac{14}{2}
Nā, me whakaoti te whārite x=\frac{-5±9}{2} ina he tango te ±. Tango 9 mai i -5.
x=-7
Whakawehe -14 ki te 2.
x=2 x=-7
Kua oti te whārite te whakatau.
\left(x+\frac{5}{2}\right)^{2}=\frac{81}{4}
Tauwehea x^{2}+5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{2}=\frac{9}{2} x+\frac{5}{2}=-\frac{9}{2}
Whakarūnātia.
x=2 x=-7
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}