Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+30=6
Whakareatia te 5 ki te 6, ka 30.
x^{2}=6-30
Tangohia te 30 mai i ngā taha e rua.
x^{2}=-24
Tangohia te 30 i te 6, ka -24.
x=2\sqrt{6}i x=-2\sqrt{6}i
Kua oti te whārite te whakatau.
x^{2}+30=6
Whakareatia te 5 ki te 6, ka 30.
x^{2}+30-6=0
Tangohia te 6 mai i ngā taha e rua.
x^{2}+24=0
Tangohia te 6 i te 30, ka 24.
x=\frac{0±\sqrt{0^{2}-4\times 24}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me 24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 24}}{2}
Pūrua 0.
x=\frac{0±\sqrt{-96}}{2}
Whakareatia -4 ki te 24.
x=\frac{0±4\sqrt{6}i}{2}
Tuhia te pūtakerua o te -96.
x=2\sqrt{6}i
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{6}i}{2} ina he tāpiri te ±.
x=-2\sqrt{6}i
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{6}i}{2} ina he tango te ±.
x=2\sqrt{6}i x=-2\sqrt{6}i
Kua oti te whārite te whakatau.