Whakaoti mō x
x=-4
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}+\left(5\times 2+1\right)x+12=0
Whakareatia ngā taha e rua o te whārite ki te 2.
2x^{2}+\left(10+1\right)x+12=0
Whakareatia te 5 ki te 2, ka 10.
2x^{2}+11x+12=0
Tāpirihia te 10 ki te 1, ka 11.
a+b=11 ab=2\times 12=24
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,24 2,12 3,8 4,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 24.
1+24=25 2+12=14 3+8=11 4+6=10
Tātaihia te tapeke mō ia takirua.
a=3 b=8
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(2x^{2}+3x\right)+\left(8x+12\right)
Tuhia anō te 2x^{2}+11x+12 hei \left(2x^{2}+3x\right)+\left(8x+12\right).
x\left(2x+3\right)+4\left(2x+3\right)
Tauwehea te x i te tuatahi me te 4 i te rōpū tuarua.
\left(2x+3\right)\left(x+4\right)
Whakatauwehea atu te kīanga pātahi 2x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{3}{2} x=-4
Hei kimi otinga whārite, me whakaoti te 2x+3=0 me te x+4=0.
2x^{2}+\left(5\times 2+1\right)x+12=0
Whakareatia ngā taha e rua o te whārite ki te 2.
2x^{2}+\left(10+1\right)x+12=0
Whakareatia te 5 ki te 2, ka 10.
2x^{2}+11x+12=0
Tāpirihia te 10 ki te 1, ka 11.
x=\frac{-11±\sqrt{11^{2}-4\times 2\times 12}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 11 mō b, me 12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 2\times 12}}{2\times 2}
Pūrua 11.
x=\frac{-11±\sqrt{121-8\times 12}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-11±\sqrt{121-96}}{2\times 2}
Whakareatia -8 ki te 12.
x=\frac{-11±\sqrt{25}}{2\times 2}
Tāpiri 121 ki te -96.
x=\frac{-11±5}{2\times 2}
Tuhia te pūtakerua o te 25.
x=\frac{-11±5}{4}
Whakareatia 2 ki te 2.
x=-\frac{6}{4}
Nā, me whakaoti te whārite x=\frac{-11±5}{4} ina he tāpiri te ±. Tāpiri -11 ki te 5.
x=-\frac{3}{2}
Whakahekea te hautanga \frac{-6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{16}{4}
Nā, me whakaoti te whārite x=\frac{-11±5}{4} ina he tango te ±. Tango 5 mai i -11.
x=-4
Whakawehe -16 ki te 4.
x=-\frac{3}{2} x=-4
Kua oti te whārite te whakatau.
2x^{2}+\left(5\times 2+1\right)x+12=0
Whakareatia ngā taha e rua o te whārite ki te 2.
2x^{2}+\left(10+1\right)x+12=0
Whakareatia te 5 ki te 2, ka 10.
2x^{2}+11x+12=0
Tāpirihia te 10 ki te 1, ka 11.
2x^{2}+11x=-12
Tangohia te 12 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{2x^{2}+11x}{2}=-\frac{12}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{11}{2}x=-\frac{12}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+\frac{11}{2}x=-6
Whakawehe -12 ki te 2.
x^{2}+\frac{11}{2}x+\left(\frac{11}{4}\right)^{2}=-6+\left(\frac{11}{4}\right)^{2}
Whakawehea te \frac{11}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{11}{4}. Nā, tāpiria te pūrua o te \frac{11}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{11}{2}x+\frac{121}{16}=-6+\frac{121}{16}
Pūruatia \frac{11}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{11}{2}x+\frac{121}{16}=\frac{25}{16}
Tāpiri -6 ki te \frac{121}{16}.
\left(x+\frac{11}{4}\right)^{2}=\frac{25}{16}
Tauwehea x^{2}+\frac{11}{2}x+\frac{121}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{11}{4}=\frac{5}{4} x+\frac{11}{4}=-\frac{5}{4}
Whakarūnātia.
x=-\frac{3}{2} x=-4
Me tango \frac{11}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}