Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=4 ab=-320
Hei whakaoti i te whārite, whakatauwehea te x^{2}+4x-320 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,320 -2,160 -4,80 -5,64 -8,40 -10,32 -16,20
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -320.
-1+320=319 -2+160=158 -4+80=76 -5+64=59 -8+40=32 -10+32=22 -16+20=4
Tātaihia te tapeke mō ia takirua.
a=-16 b=20
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(x-16\right)\left(x+20\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=16 x=-20
Hei kimi otinga whārite, me whakaoti te x-16=0 me te x+20=0.
a+b=4 ab=1\left(-320\right)=-320
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-320. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,320 -2,160 -4,80 -5,64 -8,40 -10,32 -16,20
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -320.
-1+320=319 -2+160=158 -4+80=76 -5+64=59 -8+40=32 -10+32=22 -16+20=4
Tātaihia te tapeke mō ia takirua.
a=-16 b=20
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(x^{2}-16x\right)+\left(20x-320\right)
Tuhia anō te x^{2}+4x-320 hei \left(x^{2}-16x\right)+\left(20x-320\right).
x\left(x-16\right)+20\left(x-16\right)
Tauwehea te x i te tuatahi me te 20 i te rōpū tuarua.
\left(x-16\right)\left(x+20\right)
Whakatauwehea atu te kīanga pātahi x-16 mā te whakamahi i te āhuatanga tātai tohatoha.
x=16 x=-20
Hei kimi otinga whārite, me whakaoti te x-16=0 me te x+20=0.
x^{2}+4x-320=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{4^{2}-4\left(-320\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 4 mō b, me -320 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-320\right)}}{2}
Pūrua 4.
x=\frac{-4±\sqrt{16+1280}}{2}
Whakareatia -4 ki te -320.
x=\frac{-4±\sqrt{1296}}{2}
Tāpiri 16 ki te 1280.
x=\frac{-4±36}{2}
Tuhia te pūtakerua o te 1296.
x=\frac{32}{2}
Nā, me whakaoti te whārite x=\frac{-4±36}{2} ina he tāpiri te ±. Tāpiri -4 ki te 36.
x=16
Whakawehe 32 ki te 2.
x=-\frac{40}{2}
Nā, me whakaoti te whārite x=\frac{-4±36}{2} ina he tango te ±. Tango 36 mai i -4.
x=-20
Whakawehe -40 ki te 2.
x=16 x=-20
Kua oti te whārite te whakatau.
x^{2}+4x-320=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+4x-320-\left(-320\right)=-\left(-320\right)
Me tāpiri 320 ki ngā taha e rua o te whārite.
x^{2}+4x=-\left(-320\right)
Mā te tango i te -320 i a ia ake anō ka toe ko te 0.
x^{2}+4x=320
Tango -320 mai i 0.
x^{2}+4x+2^{2}=320+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4x+4=320+4
Pūrua 2.
x^{2}+4x+4=324
Tāpiri 320 ki te 4.
\left(x+2\right)^{2}=324
Tauwehea x^{2}+4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{324}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2=18 x+2=-18
Whakarūnātia.
x=16 x=-20
Me tango 2 mai i ngā taha e rua o te whārite.