Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+4x-11+36x<-x^{2}
Me tāpiri te 36x ki ngā taha e rua.
x^{2}+40x-11<-x^{2}
Pahekotia te 4x me 36x, ka 40x.
x^{2}+40x-11+x^{2}<0
Me tāpiri te x^{2} ki ngā taha e rua.
2x^{2}+40x-11<0
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+40x-11=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-40±\sqrt{40^{2}-4\times 2\left(-11\right)}}{2\times 2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 2 mō te a, te 40 mō te b, me te -11 mō te c i te ture pūrua.
x=\frac{-40±2\sqrt{422}}{4}
Mahia ngā tātaitai.
x=\frac{\sqrt{422}}{2}-10 x=-\frac{\sqrt{422}}{2}-10
Whakaotia te whārite x=\frac{-40±2\sqrt{422}}{4} ina he tōrunga te ±, ina he tōraro te ±.
2\left(x-\left(\frac{\sqrt{422}}{2}-10\right)\right)\left(x-\left(-\frac{\sqrt{422}}{2}-10\right)\right)<0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-\left(\frac{\sqrt{422}}{2}-10\right)>0 x-\left(-\frac{\sqrt{422}}{2}-10\right)<0
Kia tōraro te otinga, me tauaro rawa ngā tohu o te x-\left(\frac{\sqrt{422}}{2}-10\right) me te x-\left(-\frac{\sqrt{422}}{2}-10\right). Whakaarohia te tauira ina he tōrunga te x-\left(\frac{\sqrt{422}}{2}-10\right) he tōraro te x-\left(-\frac{\sqrt{422}}{2}-10\right).
x\in \emptyset
He teka tēnei mō tētahi x ahakoa.
x-\left(-\frac{\sqrt{422}}{2}-10\right)>0 x-\left(\frac{\sqrt{422}}{2}-10\right)<0
Whakaarohia te tauira ina he tōrunga te x-\left(-\frac{\sqrt{422}}{2}-10\right) he tōraro te x-\left(\frac{\sqrt{422}}{2}-10\right).
x\in \left(-\frac{\sqrt{422}}{2}-10,\frac{\sqrt{422}}{2}-10\right)
Te otinga e whakaea i ngā koreōrite e rua ko x\in \left(-\frac{\sqrt{422}}{2}-10,\frac{\sqrt{422}}{2}-10\right).
x\in \left(-\frac{\sqrt{422}}{2}-10,\frac{\sqrt{422}}{2}-10\right)
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.