Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+4x=\frac{27}{4}
Whakareatia te 9 ki te \frac{3}{4}, ka \frac{27}{4}.
x^{2}+4x-\frac{27}{4}=0
Tangohia te \frac{27}{4} mai i ngā taha e rua.
x=\frac{-4±\sqrt{4^{2}-4\left(-\frac{27}{4}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 4 mō b, me -\frac{27}{4} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-\frac{27}{4}\right)}}{2}
Pūrua 4.
x=\frac{-4±\sqrt{16+27}}{2}
Whakareatia -4 ki te -\frac{27}{4}.
x=\frac{-4±\sqrt{43}}{2}
Tāpiri 16 ki te 27.
x=\frac{\sqrt{43}-4}{2}
Nā, me whakaoti te whārite x=\frac{-4±\sqrt{43}}{2} ina he tāpiri te ±. Tāpiri -4 ki te \sqrt{43}.
x=\frac{\sqrt{43}}{2}-2
Whakawehe -4+\sqrt{43} ki te 2.
x=\frac{-\sqrt{43}-4}{2}
Nā, me whakaoti te whārite x=\frac{-4±\sqrt{43}}{2} ina he tango te ±. Tango \sqrt{43} mai i -4.
x=-\frac{\sqrt{43}}{2}-2
Whakawehe -4-\sqrt{43} ki te 2.
x=\frac{\sqrt{43}}{2}-2 x=-\frac{\sqrt{43}}{2}-2
Kua oti te whārite te whakatau.
x^{2}+4x=\frac{27}{4}
Whakareatia te 9 ki te \frac{3}{4}, ka \frac{27}{4}.
x^{2}+4x+2^{2}=\frac{27}{4}+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4x+4=\frac{27}{4}+4
Pūrua 2.
x^{2}+4x+4=\frac{43}{4}
Tāpiri \frac{27}{4} ki te 4.
\left(x+2\right)^{2}=\frac{43}{4}
Tauwehea x^{2}+4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{\frac{43}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2=\frac{\sqrt{43}}{2} x+2=-\frac{\sqrt{43}}{2}
Whakarūnātia.
x=\frac{\sqrt{43}}{2}-2 x=-\frac{\sqrt{43}}{2}-2
Me tango 2 mai i ngā taha e rua o te whārite.