Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+4x-7x=-8
Tangohia te 7x mai i ngā taha e rua.
x^{2}-3x=-8
Pahekotia te 4x me -7x, ka -3x.
x^{2}-3x+8=0
Me tāpiri te 8 ki ngā taha e rua.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 8}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -3 mō b, me 8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 8}}{2}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9-32}}{2}
Whakareatia -4 ki te 8.
x=\frac{-\left(-3\right)±\sqrt{-23}}{2}
Tāpiri 9 ki te -32.
x=\frac{-\left(-3\right)±\sqrt{23}i}{2}
Tuhia te pūtakerua o te -23.
x=\frac{3±\sqrt{23}i}{2}
Ko te tauaro o -3 ko 3.
x=\frac{3+\sqrt{23}i}{2}
Nā, me whakaoti te whārite x=\frac{3±\sqrt{23}i}{2} ina he tāpiri te ±. Tāpiri 3 ki te i\sqrt{23}.
x=\frac{-\sqrt{23}i+3}{2}
Nā, me whakaoti te whārite x=\frac{3±\sqrt{23}i}{2} ina he tango te ±. Tango i\sqrt{23} mai i 3.
x=\frac{3+\sqrt{23}i}{2} x=\frac{-\sqrt{23}i+3}{2}
Kua oti te whārite te whakatau.
x^{2}+4x-7x=-8
Tangohia te 7x mai i ngā taha e rua.
x^{2}-3x=-8
Pahekotia te 4x me -7x, ka -3x.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-8+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=-8+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=-\frac{23}{4}
Tāpiri -8 ki te \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=-\frac{23}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{23}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{\sqrt{23}i}{2} x-\frac{3}{2}=-\frac{\sqrt{23}i}{2}
Whakarūnātia.
x=\frac{3+\sqrt{23}i}{2} x=\frac{-\sqrt{23}i+3}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.