Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+4x+36=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{4^{2}-4\times 36}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 4 mō b, me 36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 36}}{2}
Pūrua 4.
x=\frac{-4±\sqrt{16-144}}{2}
Whakareatia -4 ki te 36.
x=\frac{-4±\sqrt{-128}}{2}
Tāpiri 16 ki te -144.
x=\frac{-4±8\sqrt{2}i}{2}
Tuhia te pūtakerua o te -128.
x=\frac{-4+2\times 2^{\frac{5}{2}}i}{2}
Nā, me whakaoti te whārite x=\frac{-4±8\sqrt{2}i}{2} ina he tāpiri te ±. Tāpiri -4 ki te 8i\sqrt{2}.
x=-2+4\sqrt{2}i
Whakawehe -4+2i\times 2^{\frac{5}{2}} ki te 2.
x=\frac{-2\times 2^{\frac{5}{2}}i-4}{2}
Nā, me whakaoti te whārite x=\frac{-4±8\sqrt{2}i}{2} ina he tango te ±. Tango 8i\sqrt{2} mai i -4.
x=-4\sqrt{2}i-2
Whakawehe -4-2i\times 2^{\frac{5}{2}} ki te 2.
x=-2+4\sqrt{2}i x=-4\sqrt{2}i-2
Kua oti te whārite te whakatau.
x^{2}+4x+36=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+4x+36-36=-36
Me tango 36 mai i ngā taha e rua o te whārite.
x^{2}+4x=-36
Mā te tango i te 36 i a ia ake anō ka toe ko te 0.
x^{2}+4x+2^{2}=-36+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4x+4=-36+4
Pūrua 2.
x^{2}+4x+4=-32
Tāpiri -36 ki te 4.
\left(x+2\right)^{2}=-32
Tauwehea x^{2}+4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-32}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2=4\sqrt{2}i x+2=-4\sqrt{2}i
Whakarūnātia.
x=-2+4\sqrt{2}i x=-4\sqrt{2}i-2
Me tango 2 mai i ngā taha e rua o te whārite.