Tauwehe
\left(x+18\right)^{2}
Aromātai
\left(x+18\right)^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=36 ab=1\times 324=324
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx+324. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,324 2,162 3,108 4,81 6,54 9,36 12,27 18,18
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 324.
1+324=325 2+162=164 3+108=111 4+81=85 6+54=60 9+36=45 12+27=39 18+18=36
Tātaihia te tapeke mō ia takirua.
a=18 b=18
Ko te otinga te takirua ka hoatu i te tapeke 36.
\left(x^{2}+18x\right)+\left(18x+324\right)
Tuhia anō te x^{2}+36x+324 hei \left(x^{2}+18x\right)+\left(18x+324\right).
x\left(x+18\right)+18\left(x+18\right)
Tauwehea te x i te tuatahi me te 18 i te rōpū tuarua.
\left(x+18\right)\left(x+18\right)
Whakatauwehea atu te kīanga pātahi x+18 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(x+18\right)^{2}
Tuhia anōtia hei pūrua huarua.
factor(x^{2}+36x+324)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
\sqrt{324}=18
Kimihia te pūtakerua o te kīanga tau autō, 324.
\left(x+18\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
x^{2}+36x+324=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-36±\sqrt{36^{2}-4\times 324}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-36±\sqrt{1296-4\times 324}}{2}
Pūrua 36.
x=\frac{-36±\sqrt{1296-1296}}{2}
Whakareatia -4 ki te 324.
x=\frac{-36±\sqrt{0}}{2}
Tāpiri 1296 ki te -1296.
x=\frac{-36±0}{2}
Tuhia te pūtakerua o te 0.
x^{2}+36x+324=\left(x-\left(-18\right)\right)\left(x-\left(-18\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -18 mō te x_{1} me te -18 mō te x_{2}.
x^{2}+36x+324=\left(x+18\right)\left(x+18\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}