Whakaoti mō x
x=-284
x=250
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=34 ab=-71000
Hei whakaoti i te whārite, whakatauwehea te x^{2}+34x-71000 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,71000 -2,35500 -4,17750 -5,14200 -8,8875 -10,7100 -20,3550 -25,2840 -40,1775 -50,1420 -71,1000 -100,710 -125,568 -142,500 -200,355 -250,284
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -71000.
-1+71000=70999 -2+35500=35498 -4+17750=17746 -5+14200=14195 -8+8875=8867 -10+7100=7090 -20+3550=3530 -25+2840=2815 -40+1775=1735 -50+1420=1370 -71+1000=929 -100+710=610 -125+568=443 -142+500=358 -200+355=155 -250+284=34
Tātaihia te tapeke mō ia takirua.
a=-250 b=284
Ko te otinga te takirua ka hoatu i te tapeke 34.
\left(x-250\right)\left(x+284\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=250 x=-284
Hei kimi otinga whārite, me whakaoti te x-250=0 me te x+284=0.
a+b=34 ab=1\left(-71000\right)=-71000
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-71000. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,71000 -2,35500 -4,17750 -5,14200 -8,8875 -10,7100 -20,3550 -25,2840 -40,1775 -50,1420 -71,1000 -100,710 -125,568 -142,500 -200,355 -250,284
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -71000.
-1+71000=70999 -2+35500=35498 -4+17750=17746 -5+14200=14195 -8+8875=8867 -10+7100=7090 -20+3550=3530 -25+2840=2815 -40+1775=1735 -50+1420=1370 -71+1000=929 -100+710=610 -125+568=443 -142+500=358 -200+355=155 -250+284=34
Tātaihia te tapeke mō ia takirua.
a=-250 b=284
Ko te otinga te takirua ka hoatu i te tapeke 34.
\left(x^{2}-250x\right)+\left(284x-71000\right)
Tuhia anō te x^{2}+34x-71000 hei \left(x^{2}-250x\right)+\left(284x-71000\right).
x\left(x-250\right)+284\left(x-250\right)
Tauwehea te x i te tuatahi me te 284 i te rōpū tuarua.
\left(x-250\right)\left(x+284\right)
Whakatauwehea atu te kīanga pātahi x-250 mā te whakamahi i te āhuatanga tātai tohatoha.
x=250 x=-284
Hei kimi otinga whārite, me whakaoti te x-250=0 me te x+284=0.
x^{2}+34x-71000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-34±\sqrt{34^{2}-4\left(-71000\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 34 mō b, me -71000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-34±\sqrt{1156-4\left(-71000\right)}}{2}
Pūrua 34.
x=\frac{-34±\sqrt{1156+284000}}{2}
Whakareatia -4 ki te -71000.
x=\frac{-34±\sqrt{285156}}{2}
Tāpiri 1156 ki te 284000.
x=\frac{-34±534}{2}
Tuhia te pūtakerua o te 285156.
x=\frac{500}{2}
Nā, me whakaoti te whārite x=\frac{-34±534}{2} ina he tāpiri te ±. Tāpiri -34 ki te 534.
x=250
Whakawehe 500 ki te 2.
x=-\frac{568}{2}
Nā, me whakaoti te whārite x=\frac{-34±534}{2} ina he tango te ±. Tango 534 mai i -34.
x=-284
Whakawehe -568 ki te 2.
x=250 x=-284
Kua oti te whārite te whakatau.
x^{2}+34x-71000=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+34x-71000-\left(-71000\right)=-\left(-71000\right)
Me tāpiri 71000 ki ngā taha e rua o te whārite.
x^{2}+34x=-\left(-71000\right)
Mā te tango i te -71000 i a ia ake anō ka toe ko te 0.
x^{2}+34x=71000
Tango -71000 mai i 0.
x^{2}+34x+17^{2}=71000+17^{2}
Whakawehea te 34, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 17. Nā, tāpiria te pūrua o te 17 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+34x+289=71000+289
Pūrua 17.
x^{2}+34x+289=71289
Tāpiri 71000 ki te 289.
\left(x+17\right)^{2}=71289
Tauwehea x^{2}+34x+289. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+17\right)^{2}}=\sqrt{71289}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+17=267 x+17=-267
Whakarūnātia.
x=250 x=-284
Me tango 17 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}