Whakaoti mō x
x=-40
x=9
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=31 ab=-360
Hei whakaoti i te whārite, whakatauwehea te x^{2}+31x-360 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,360 -2,180 -3,120 -4,90 -5,72 -6,60 -8,45 -9,40 -10,36 -12,30 -15,24 -18,20
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -360.
-1+360=359 -2+180=178 -3+120=117 -4+90=86 -5+72=67 -6+60=54 -8+45=37 -9+40=31 -10+36=26 -12+30=18 -15+24=9 -18+20=2
Tātaihia te tapeke mō ia takirua.
a=-9 b=40
Ko te otinga te takirua ka hoatu i te tapeke 31.
\left(x-9\right)\left(x+40\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=9 x=-40
Hei kimi otinga whārite, me whakaoti te x-9=0 me te x+40=0.
a+b=31 ab=1\left(-360\right)=-360
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-360. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,360 -2,180 -3,120 -4,90 -5,72 -6,60 -8,45 -9,40 -10,36 -12,30 -15,24 -18,20
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -360.
-1+360=359 -2+180=178 -3+120=117 -4+90=86 -5+72=67 -6+60=54 -8+45=37 -9+40=31 -10+36=26 -12+30=18 -15+24=9 -18+20=2
Tātaihia te tapeke mō ia takirua.
a=-9 b=40
Ko te otinga te takirua ka hoatu i te tapeke 31.
\left(x^{2}-9x\right)+\left(40x-360\right)
Tuhia anō te x^{2}+31x-360 hei \left(x^{2}-9x\right)+\left(40x-360\right).
x\left(x-9\right)+40\left(x-9\right)
Tauwehea te x i te tuatahi me te 40 i te rōpū tuarua.
\left(x-9\right)\left(x+40\right)
Whakatauwehea atu te kīanga pātahi x-9 mā te whakamahi i te āhuatanga tātai tohatoha.
x=9 x=-40
Hei kimi otinga whārite, me whakaoti te x-9=0 me te x+40=0.
x^{2}+31x-360=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-31±\sqrt{31^{2}-4\left(-360\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 31 mō b, me -360 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-31±\sqrt{961-4\left(-360\right)}}{2}
Pūrua 31.
x=\frac{-31±\sqrt{961+1440}}{2}
Whakareatia -4 ki te -360.
x=\frac{-31±\sqrt{2401}}{2}
Tāpiri 961 ki te 1440.
x=\frac{-31±49}{2}
Tuhia te pūtakerua o te 2401.
x=\frac{18}{2}
Nā, me whakaoti te whārite x=\frac{-31±49}{2} ina he tāpiri te ±. Tāpiri -31 ki te 49.
x=9
Whakawehe 18 ki te 2.
x=-\frac{80}{2}
Nā, me whakaoti te whārite x=\frac{-31±49}{2} ina he tango te ±. Tango 49 mai i -31.
x=-40
Whakawehe -80 ki te 2.
x=9 x=-40
Kua oti te whārite te whakatau.
x^{2}+31x-360=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+31x-360-\left(-360\right)=-\left(-360\right)
Me tāpiri 360 ki ngā taha e rua o te whārite.
x^{2}+31x=-\left(-360\right)
Mā te tango i te -360 i a ia ake anō ka toe ko te 0.
x^{2}+31x=360
Tango -360 mai i 0.
x^{2}+31x+\left(\frac{31}{2}\right)^{2}=360+\left(\frac{31}{2}\right)^{2}
Whakawehea te 31, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{31}{2}. Nā, tāpiria te pūrua o te \frac{31}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+31x+\frac{961}{4}=360+\frac{961}{4}
Pūruatia \frac{31}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+31x+\frac{961}{4}=\frac{2401}{4}
Tāpiri 360 ki te \frac{961}{4}.
\left(x+\frac{31}{2}\right)^{2}=\frac{2401}{4}
Tauwehea x^{2}+31x+\frac{961}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{31}{2}\right)^{2}}=\sqrt{\frac{2401}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{31}{2}=\frac{49}{2} x+\frac{31}{2}=-\frac{49}{2}
Whakarūnātia.
x=9 x=-40
Me tango \frac{31}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}