Aromātai
3x^{2}-4x-3
Tauwehe
3\left(x-\frac{2-\sqrt{13}}{3}\right)\left(x-\frac{\sqrt{13}+2}{3}\right)
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
x ^ { 2 } + 3 x - 4 x ^ { 2 } - 5 x + 6 x ^ { 2 } - 2 x - 3
Tohaina
Kua tāruatia ki te papatopenga
-3x^{2}+3x-5x+6x^{2}-2x-3
Pahekotia te x^{2} me -4x^{2}, ka -3x^{2}.
-3x^{2}-2x+6x^{2}-2x-3
Pahekotia te 3x me -5x, ka -2x.
3x^{2}-2x-2x-3
Pahekotia te -3x^{2} me 6x^{2}, ka 3x^{2}.
3x^{2}-4x-3
Pahekotia te -2x me -2x, ka -4x.
factor(-3x^{2}+3x-5x+6x^{2}-2x-3)
Pahekotia te x^{2} me -4x^{2}, ka -3x^{2}.
factor(-3x^{2}-2x+6x^{2}-2x-3)
Pahekotia te 3x me -5x, ka -2x.
factor(3x^{2}-2x-2x-3)
Pahekotia te -3x^{2} me 6x^{2}, ka 3x^{2}.
factor(3x^{2}-4x-3)
Pahekotia te -2x me -2x, ka -4x.
3x^{2}-4x-3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3\left(-3\right)}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3\left(-3\right)}}{2\times 3}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-12\left(-3\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-4\right)±\sqrt{16+36}}{2\times 3}
Whakareatia -12 ki te -3.
x=\frac{-\left(-4\right)±\sqrt{52}}{2\times 3}
Tāpiri 16 ki te 36.
x=\frac{-\left(-4\right)±2\sqrt{13}}{2\times 3}
Tuhia te pūtakerua o te 52.
x=\frac{4±2\sqrt{13}}{2\times 3}
Ko te tauaro o -4 ko 4.
x=\frac{4±2\sqrt{13}}{6}
Whakareatia 2 ki te 3.
x=\frac{2\sqrt{13}+4}{6}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{13}}{6} ina he tāpiri te ±. Tāpiri 4 ki te 2\sqrt{13}.
x=\frac{\sqrt{13}+2}{3}
Whakawehe 4+2\sqrt{13} ki te 6.
x=\frac{4-2\sqrt{13}}{6}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{13}}{6} ina he tango te ±. Tango 2\sqrt{13} mai i 4.
x=\frac{2-\sqrt{13}}{3}
Whakawehe 4-2\sqrt{13} ki te 6.
3x^{2}-4x-3=3\left(x-\frac{\sqrt{13}+2}{3}\right)\left(x-\frac{2-\sqrt{13}}{3}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{2+\sqrt{13}}{3} mō te x_{1} me te \frac{2-\sqrt{13}}{3} mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}