Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-3x^{2}+3x+7x+12
Pahekotia te x^{2} me -4x^{2}, ka -3x^{2}.
-3x^{2}+10x+12
Pahekotia te 3x me 7x, ka 10x.
factor(-3x^{2}+3x+7x+12)
Pahekotia te x^{2} me -4x^{2}, ka -3x^{2}.
factor(-3x^{2}+10x+12)
Pahekotia te 3x me 7x, ka 10x.
-3x^{2}+10x+12=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\left(-3\right)\times 12}}{2\left(-3\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-10±\sqrt{100-4\left(-3\right)\times 12}}{2\left(-3\right)}
Pūrua 10.
x=\frac{-10±\sqrt{100+12\times 12}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-10±\sqrt{100+144}}{2\left(-3\right)}
Whakareatia 12 ki te 12.
x=\frac{-10±\sqrt{244}}{2\left(-3\right)}
Tāpiri 100 ki te 144.
x=\frac{-10±2\sqrt{61}}{2\left(-3\right)}
Tuhia te pūtakerua o te 244.
x=\frac{-10±2\sqrt{61}}{-6}
Whakareatia 2 ki te -3.
x=\frac{2\sqrt{61}-10}{-6}
Nā, me whakaoti te whārite x=\frac{-10±2\sqrt{61}}{-6} ina he tāpiri te ±. Tāpiri -10 ki te 2\sqrt{61}.
x=\frac{5-\sqrt{61}}{3}
Whakawehe -10+2\sqrt{61} ki te -6.
x=\frac{-2\sqrt{61}-10}{-6}
Nā, me whakaoti te whārite x=\frac{-10±2\sqrt{61}}{-6} ina he tango te ±. Tango 2\sqrt{61} mai i -10.
x=\frac{\sqrt{61}+5}{3}
Whakawehe -10-2\sqrt{61} ki te -6.
-3x^{2}+10x+12=-3\left(x-\frac{5-\sqrt{61}}{3}\right)\left(x-\frac{\sqrt{61}+5}{3}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{5-\sqrt{61}}{3} mō te x_{1} me te \frac{5+\sqrt{61}}{3} mō te x_{2}.