Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x\left(x+3\right)x^{2}+3xx\left(x+3\right)-20=8x\left(x+3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x\left(x+3\right).
\left(x^{2}+3x\right)x^{2}+3xx\left(x+3\right)-20=8x\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+3.
x^{4}+3x^{3}+3xx\left(x+3\right)-20=8x\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+3x ki te x^{2}.
x^{4}+3x^{3}+3x^{2}\left(x+3\right)-20=8x\left(x+3\right)
Whakareatia te x ki te x, ka x^{2}.
x^{4}+3x^{3}+3x^{3}+9x^{2}-20=8x\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x^{2} ki te x+3.
x^{4}+6x^{3}+9x^{2}-20=8x\left(x+3\right)
Pahekotia te 3x^{3} me 3x^{3}, ka 6x^{3}.
x^{4}+6x^{3}+9x^{2}-20=8x^{2}+24x
Whakamahia te āhuatanga tohatoha hei whakarea te 8x ki te x+3.
x^{4}+6x^{3}+9x^{2}-20-8x^{2}=24x
Tangohia te 8x^{2} mai i ngā taha e rua.
x^{4}+6x^{3}+x^{2}-20=24x
Pahekotia te 9x^{2} me -8x^{2}, ka x^{2}.
x^{4}+6x^{3}+x^{2}-20-24x=0
Tangohia te 24x mai i ngā taha e rua.
x^{4}+6x^{3}+x^{2}-24x-20=0
Hurinahatia te whārite ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
±20,±10,±5,±4,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -20, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{3}+5x^{2}-4x-20=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{4}+6x^{3}+x^{2}-24x-20 ki te x+1, kia riro ko x^{3}+5x^{2}-4x-20. Whakaotihia te whārite ina ōrite te hua ki te 0.
±20,±10,±5,±4,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -20, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=2
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}+7x+10=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}+5x^{2}-4x-20 ki te x-2, kia riro ko x^{2}+7x+10. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-7±\sqrt{7^{2}-4\times 1\times 10}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 7 mō te b, me te 10 mō te c i te ture pūrua.
x=\frac{-7±3}{2}
Mahia ngā tātaitai.
x=-5 x=-2
Whakaotia te whārite x^{2}+7x+10=0 ina he tōrunga te ±, ina he tōraro te ±.
x=-1 x=2 x=-5 x=-2
Rārangitia ngā otinga katoa i kitea.