Whakaoti mō x
x=-2
x=-1
x=2
x=-5
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\left(x+3\right)x^{2}+3xx\left(x+3\right)-20=8x\left(x+3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x\left(x+3\right).
\left(x^{2}+3x\right)x^{2}+3xx\left(x+3\right)-20=8x\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+3.
x^{4}+3x^{3}+3xx\left(x+3\right)-20=8x\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+3x ki te x^{2}.
x^{4}+3x^{3}+3x^{2}\left(x+3\right)-20=8x\left(x+3\right)
Whakareatia te x ki te x, ka x^{2}.
x^{4}+3x^{3}+3x^{3}+9x^{2}-20=8x\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x^{2} ki te x+3.
x^{4}+6x^{3}+9x^{2}-20=8x\left(x+3\right)
Pahekotia te 3x^{3} me 3x^{3}, ka 6x^{3}.
x^{4}+6x^{3}+9x^{2}-20=8x^{2}+24x
Whakamahia te āhuatanga tohatoha hei whakarea te 8x ki te x+3.
x^{4}+6x^{3}+9x^{2}-20-8x^{2}=24x
Tangohia te 8x^{2} mai i ngā taha e rua.
x^{4}+6x^{3}+x^{2}-20=24x
Pahekotia te 9x^{2} me -8x^{2}, ka x^{2}.
x^{4}+6x^{3}+x^{2}-20-24x=0
Tangohia te 24x mai i ngā taha e rua.
x^{4}+6x^{3}+x^{2}-24x-20=0
Hurinahatia te whārite ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
±20,±10,±5,±4,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -20, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{3}+5x^{2}-4x-20=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{4}+6x^{3}+x^{2}-24x-20 ki te x+1, kia riro ko x^{3}+5x^{2}-4x-20. Whakaotihia te whārite ina ōrite te hua ki te 0.
±20,±10,±5,±4,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -20, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=2
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}+7x+10=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}+5x^{2}-4x-20 ki te x-2, kia riro ko x^{2}+7x+10. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-7±\sqrt{7^{2}-4\times 1\times 10}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 7 mō te b, me te 10 mō te c i te ture pūrua.
x=\frac{-7±3}{2}
Mahia ngā tātaitai.
x=-5 x=-2
Whakaotia te whārite x^{2}+7x+10=0 ina he tōrunga te ±, ina he tōraro te ±.
x=-1 x=2 x=-5 x=-2
Rārangitia ngā otinga katoa i kitea.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}