Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+5x+7=0
Pahekotia te 3x me 2x, ka 5x.
x=\frac{-5±\sqrt{5^{2}-4\times 7}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 5 mō b, me 7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 7}}{2}
Pūrua 5.
x=\frac{-5±\sqrt{25-28}}{2}
Whakareatia -4 ki te 7.
x=\frac{-5±\sqrt{-3}}{2}
Tāpiri 25 ki te -28.
x=\frac{-5±\sqrt{3}i}{2}
Tuhia te pūtakerua o te -3.
x=\frac{-5+\sqrt{3}i}{2}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{3}i}{2} ina he tāpiri te ±. Tāpiri -5 ki te i\sqrt{3}.
x=\frac{-\sqrt{3}i-5}{2}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{3}i}{2} ina he tango te ±. Tango i\sqrt{3} mai i -5.
x=\frac{-5+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-5}{2}
Kua oti te whārite te whakatau.
x^{2}+5x+7=0
Pahekotia te 3x me 2x, ka 5x.
x^{2}+5x=-7
Tangohia te 7 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-7+\left(\frac{5}{2}\right)^{2}
Whakawehea te 5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{2}. Nā, tāpiria te pūrua o te \frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+5x+\frac{25}{4}=-7+\frac{25}{4}
Pūruatia \frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+5x+\frac{25}{4}=-\frac{3}{4}
Tāpiri -7 ki te \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=-\frac{3}{4}
Tauwehea x^{2}+5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{2}=\frac{\sqrt{3}i}{2} x+\frac{5}{2}=-\frac{\sqrt{3}i}{2}
Whakarūnātia.
x=\frac{-5+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-5}{2}
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.