Whakaoti mō x
x=1
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+3-4x=0
Tangohia te 4x mai i ngā taha e rua.
x^{2}-4x+3=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-4 ab=3
Hei whakaoti i te whārite, whakatauwehea te x^{2}-4x+3 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-3 b=-1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x-3\right)\left(x-1\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=3 x=1
Hei kimi otinga whārite, me whakaoti te x-3=0 me te x-1=0.
x^{2}+3-4x=0
Tangohia te 4x mai i ngā taha e rua.
x^{2}-4x+3=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-4 ab=1\times 3=3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-3 b=-1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-3x\right)+\left(-x+3\right)
Tuhia anō te x^{2}-4x+3 hei \left(x^{2}-3x\right)+\left(-x+3\right).
x\left(x-3\right)-\left(x-3\right)
Tauwehea te x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-3\right)\left(x-1\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=1
Hei kimi otinga whārite, me whakaoti te x-3=0 me te x-1=0.
x^{2}+3-4x=0
Tangohia te 4x mai i ngā taha e rua.
x^{2}-4x+3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -4 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2}
Whakareatia -4 ki te 3.
x=\frac{-\left(-4\right)±\sqrt{4}}{2}
Tāpiri 16 ki te -12.
x=\frac{-\left(-4\right)±2}{2}
Tuhia te pūtakerua o te 4.
x=\frac{4±2}{2}
Ko te tauaro o -4 ko 4.
x=\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{4±2}{2} ina he tāpiri te ±. Tāpiri 4 ki te 2.
x=3
Whakawehe 6 ki te 2.
x=\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{4±2}{2} ina he tango te ±. Tango 2 mai i 4.
x=1
Whakawehe 2 ki te 2.
x=3 x=1
Kua oti te whārite te whakatau.
x^{2}+3-4x=0
Tangohia te 4x mai i ngā taha e rua.
x^{2}-4x=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}-4x+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=-3+4
Pūrua -2.
x^{2}-4x+4=1
Tāpiri -3 ki te 4.
\left(x-2\right)^{2}=1
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=1 x-2=-1
Whakarūnātia.
x=3 x=1
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}