Whakaoti mō x
x=-21
x=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+25x+84=0
Me tāpiri te 84 ki ngā taha e rua.
a+b=25 ab=84
Hei whakaoti i te whārite, whakatauwehea te x^{2}+25x+84 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,84 2,42 3,28 4,21 6,14 7,12
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 84.
1+84=85 2+42=44 3+28=31 4+21=25 6+14=20 7+12=19
Tātaihia te tapeke mō ia takirua.
a=4 b=21
Ko te otinga te takirua ka hoatu i te tapeke 25.
\left(x+4\right)\left(x+21\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=-4 x=-21
Hei kimi otinga whārite, me whakaoti te x+4=0 me te x+21=0.
x^{2}+25x+84=0
Me tāpiri te 84 ki ngā taha e rua.
a+b=25 ab=1\times 84=84
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+84. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,84 2,42 3,28 4,21 6,14 7,12
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 84.
1+84=85 2+42=44 3+28=31 4+21=25 6+14=20 7+12=19
Tātaihia te tapeke mō ia takirua.
a=4 b=21
Ko te otinga te takirua ka hoatu i te tapeke 25.
\left(x^{2}+4x\right)+\left(21x+84\right)
Tuhia anō te x^{2}+25x+84 hei \left(x^{2}+4x\right)+\left(21x+84\right).
x\left(x+4\right)+21\left(x+4\right)
Tauwehea te x i te tuatahi me te 21 i te rōpū tuarua.
\left(x+4\right)\left(x+21\right)
Whakatauwehea atu te kīanga pātahi x+4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-4 x=-21
Hei kimi otinga whārite, me whakaoti te x+4=0 me te x+21=0.
x^{2}+25x=-84
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}+25x-\left(-84\right)=-84-\left(-84\right)
Me tāpiri 84 ki ngā taha e rua o te whārite.
x^{2}+25x-\left(-84\right)=0
Mā te tango i te -84 i a ia ake anō ka toe ko te 0.
x^{2}+25x+84=0
Tango -84 mai i 0.
x=\frac{-25±\sqrt{25^{2}-4\times 84}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 25 mō b, me 84 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\times 84}}{2}
Pūrua 25.
x=\frac{-25±\sqrt{625-336}}{2}
Whakareatia -4 ki te 84.
x=\frac{-25±\sqrt{289}}{2}
Tāpiri 625 ki te -336.
x=\frac{-25±17}{2}
Tuhia te pūtakerua o te 289.
x=-\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{-25±17}{2} ina he tāpiri te ±. Tāpiri -25 ki te 17.
x=-4
Whakawehe -8 ki te 2.
x=-\frac{42}{2}
Nā, me whakaoti te whārite x=\frac{-25±17}{2} ina he tango te ±. Tango 17 mai i -25.
x=-21
Whakawehe -42 ki te 2.
x=-4 x=-21
Kua oti te whārite te whakatau.
x^{2}+25x=-84
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+25x+\left(\frac{25}{2}\right)^{2}=-84+\left(\frac{25}{2}\right)^{2}
Whakawehea te 25, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{25}{2}. Nā, tāpiria te pūrua o te \frac{25}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+25x+\frac{625}{4}=-84+\frac{625}{4}
Pūruatia \frac{25}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+25x+\frac{625}{4}=\frac{289}{4}
Tāpiri -84 ki te \frac{625}{4}.
\left(x+\frac{25}{2}\right)^{2}=\frac{289}{4}
Tauwehea x^{2}+25x+\frac{625}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{25}{2}\right)^{2}}=\sqrt{\frac{289}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{25}{2}=\frac{17}{2} x+\frac{25}{2}=-\frac{17}{2}
Whakarūnātia.
x=-4 x=-21
Me tango \frac{25}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}