Whakaoti mō x
x=-21
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+20x-18-3=0
Tangohia te 3 mai i ngā taha e rua.
x^{2}+20x-21=0
Tangohia te 3 i te -18, ka -21.
a+b=20 ab=-21
Hei whakaoti i te whārite, whakatauwehea te x^{2}+20x-21 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,21 -3,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -21.
-1+21=20 -3+7=4
Tātaihia te tapeke mō ia takirua.
a=-1 b=21
Ko te otinga te takirua ka hoatu i te tapeke 20.
\left(x-1\right)\left(x+21\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=1 x=-21
Hei kimi otinga whārite, me whakaoti te x-1=0 me te x+21=0.
x^{2}+20x-18-3=0
Tangohia te 3 mai i ngā taha e rua.
x^{2}+20x-21=0
Tangohia te 3 i te -18, ka -21.
a+b=20 ab=1\left(-21\right)=-21
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-21. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,21 -3,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -21.
-1+21=20 -3+7=4
Tātaihia te tapeke mō ia takirua.
a=-1 b=21
Ko te otinga te takirua ka hoatu i te tapeke 20.
\left(x^{2}-x\right)+\left(21x-21\right)
Tuhia anō te x^{2}+20x-21 hei \left(x^{2}-x\right)+\left(21x-21\right).
x\left(x-1\right)+21\left(x-1\right)
Tauwehea te x i te tuatahi me te 21 i te rōpū tuarua.
\left(x-1\right)\left(x+21\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-21
Hei kimi otinga whārite, me whakaoti te x-1=0 me te x+21=0.
x^{2}+20x-18=3
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}+20x-18-3=3-3
Me tango 3 mai i ngā taha e rua o te whārite.
x^{2}+20x-18-3=0
Mā te tango i te 3 i a ia ake anō ka toe ko te 0.
x^{2}+20x-21=0
Tango 3 mai i -18.
x=\frac{-20±\sqrt{20^{2}-4\left(-21\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 20 mō b, me -21 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-21\right)}}{2}
Pūrua 20.
x=\frac{-20±\sqrt{400+84}}{2}
Whakareatia -4 ki te -21.
x=\frac{-20±\sqrt{484}}{2}
Tāpiri 400 ki te 84.
x=\frac{-20±22}{2}
Tuhia te pūtakerua o te 484.
x=\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{-20±22}{2} ina he tāpiri te ±. Tāpiri -20 ki te 22.
x=1
Whakawehe 2 ki te 2.
x=-\frac{42}{2}
Nā, me whakaoti te whārite x=\frac{-20±22}{2} ina he tango te ±. Tango 22 mai i -20.
x=-21
Whakawehe -42 ki te 2.
x=1 x=-21
Kua oti te whārite te whakatau.
x^{2}+20x-18=3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+20x-18-\left(-18\right)=3-\left(-18\right)
Me tāpiri 18 ki ngā taha e rua o te whārite.
x^{2}+20x=3-\left(-18\right)
Mā te tango i te -18 i a ia ake anō ka toe ko te 0.
x^{2}+20x=21
Tango -18 mai i 3.
x^{2}+20x+10^{2}=21+10^{2}
Whakawehea te 20, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 10. Nā, tāpiria te pūrua o te 10 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+20x+100=21+100
Pūrua 10.
x^{2}+20x+100=121
Tāpiri 21 ki te 100.
\left(x+10\right)^{2}=121
Tauwehea x^{2}+20x+100. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+10\right)^{2}}=\sqrt{121}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+10=11 x+10=-11
Whakarūnātia.
x=1 x=-21
Me tango 10 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}