Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=20 ab=75
Hei whakaoti i te whārite, whakatauwehea te x^{2}+20x+75 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,75 3,25 5,15
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 75.
1+75=76 3+25=28 5+15=20
Tātaihia te tapeke mō ia takirua.
a=5 b=15
Ko te otinga te takirua ka hoatu i te tapeke 20.
\left(x+5\right)\left(x+15\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=-5 x=-15
Hei kimi otinga whārite, me whakaoti te x+5=0 me te x+15=0.
a+b=20 ab=1\times 75=75
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+75. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,75 3,25 5,15
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 75.
1+75=76 3+25=28 5+15=20
Tātaihia te tapeke mō ia takirua.
a=5 b=15
Ko te otinga te takirua ka hoatu i te tapeke 20.
\left(x^{2}+5x\right)+\left(15x+75\right)
Tuhia anō te x^{2}+20x+75 hei \left(x^{2}+5x\right)+\left(15x+75\right).
x\left(x+5\right)+15\left(x+5\right)
Tauwehea te x i te tuatahi me te 15 i te rōpū tuarua.
\left(x+5\right)\left(x+15\right)
Whakatauwehea atu te kīanga pātahi x+5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-5 x=-15
Hei kimi otinga whārite, me whakaoti te x+5=0 me te x+15=0.
x^{2}+20x+75=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-20±\sqrt{20^{2}-4\times 75}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 20 mō b, me 75 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 75}}{2}
Pūrua 20.
x=\frac{-20±\sqrt{400-300}}{2}
Whakareatia -4 ki te 75.
x=\frac{-20±\sqrt{100}}{2}
Tāpiri 400 ki te -300.
x=\frac{-20±10}{2}
Tuhia te pūtakerua o te 100.
x=-\frac{10}{2}
Nā, me whakaoti te whārite x=\frac{-20±10}{2} ina he tāpiri te ±. Tāpiri -20 ki te 10.
x=-5
Whakawehe -10 ki te 2.
x=-\frac{30}{2}
Nā, me whakaoti te whārite x=\frac{-20±10}{2} ina he tango te ±. Tango 10 mai i -20.
x=-15
Whakawehe -30 ki te 2.
x=-5 x=-15
Kua oti te whārite te whakatau.
x^{2}+20x+75=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+20x+75-75=-75
Me tango 75 mai i ngā taha e rua o te whārite.
x^{2}+20x=-75
Mā te tango i te 75 i a ia ake anō ka toe ko te 0.
x^{2}+20x+10^{2}=-75+10^{2}
Whakawehea te 20, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 10. Nā, tāpiria te pūrua o te 10 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+20x+100=-75+100
Pūrua 10.
x^{2}+20x+100=25
Tāpiri -75 ki te 100.
\left(x+10\right)^{2}=25
Tauwehea x^{2}+20x+100. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+10\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+10=5 x+10=-5
Whakarūnātia.
x=-5 x=-15
Me tango 10 mai i ngā taha e rua o te whārite.