Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+2x-4=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
Pūrua 2.
x=\frac{-2±\sqrt{4+16}}{2}
Whakareatia -4 ki te -4.
x=\frac{-2±\sqrt{20}}{2}
Tāpiri 4 ki te 16.
x=\frac{-2±2\sqrt{5}}{2}
Tuhia te pūtakerua o te 20.
x=\frac{2\sqrt{5}-2}{2}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{5}}{2} ina he tāpiri te ±. Tāpiri -2 ki te 2\sqrt{5}.
x=\sqrt{5}-1
Whakawehe -2+2\sqrt{5} ki te 2.
x=\frac{-2\sqrt{5}-2}{2}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{5}}{2} ina he tango te ±. Tango 2\sqrt{5} mai i -2.
x=-\sqrt{5}-1
Whakawehe -2-2\sqrt{5} ki te 2.
x^{2}+2x-4=\left(x-\left(\sqrt{5}-1\right)\right)\left(x-\left(-\sqrt{5}-1\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -1+\sqrt{5} mō te x_{1} me te -1-\sqrt{5} mō te x_{2}.