Whakaoti mō x
x=-62
x=60
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=2 ab=-3720
Hei whakaoti i te whārite, whakatauwehea te x^{2}+2x-3720 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,3720 -2,1860 -3,1240 -4,930 -5,744 -6,620 -8,465 -10,372 -12,310 -15,248 -20,186 -24,155 -30,124 -31,120 -40,93 -60,62
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -3720.
-1+3720=3719 -2+1860=1858 -3+1240=1237 -4+930=926 -5+744=739 -6+620=614 -8+465=457 -10+372=362 -12+310=298 -15+248=233 -20+186=166 -24+155=131 -30+124=94 -31+120=89 -40+93=53 -60+62=2
Tātaihia te tapeke mō ia takirua.
a=-60 b=62
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(x-60\right)\left(x+62\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=60 x=-62
Hei kimi otinga whārite, me whakaoti te x-60=0 me te x+62=0.
a+b=2 ab=1\left(-3720\right)=-3720
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-3720. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,3720 -2,1860 -3,1240 -4,930 -5,744 -6,620 -8,465 -10,372 -12,310 -15,248 -20,186 -24,155 -30,124 -31,120 -40,93 -60,62
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -3720.
-1+3720=3719 -2+1860=1858 -3+1240=1237 -4+930=926 -5+744=739 -6+620=614 -8+465=457 -10+372=362 -12+310=298 -15+248=233 -20+186=166 -24+155=131 -30+124=94 -31+120=89 -40+93=53 -60+62=2
Tātaihia te tapeke mō ia takirua.
a=-60 b=62
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(x^{2}-60x\right)+\left(62x-3720\right)
Tuhia anō te x^{2}+2x-3720 hei \left(x^{2}-60x\right)+\left(62x-3720\right).
x\left(x-60\right)+62\left(x-60\right)
Tauwehea te x i te tuatahi me te 62 i te rōpū tuarua.
\left(x-60\right)\left(x+62\right)
Whakatauwehea atu te kīanga pātahi x-60 mā te whakamahi i te āhuatanga tātai tohatoha.
x=60 x=-62
Hei kimi otinga whārite, me whakaoti te x-60=0 me te x+62=0.
x^{2}+2x-3720=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\left(-3720\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me -3720 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-3720\right)}}{2}
Pūrua 2.
x=\frac{-2±\sqrt{4+14880}}{2}
Whakareatia -4 ki te -3720.
x=\frac{-2±\sqrt{14884}}{2}
Tāpiri 4 ki te 14880.
x=\frac{-2±122}{2}
Tuhia te pūtakerua o te 14884.
x=\frac{120}{2}
Nā, me whakaoti te whārite x=\frac{-2±122}{2} ina he tāpiri te ±. Tāpiri -2 ki te 122.
x=60
Whakawehe 120 ki te 2.
x=-\frac{124}{2}
Nā, me whakaoti te whārite x=\frac{-2±122}{2} ina he tango te ±. Tango 122 mai i -2.
x=-62
Whakawehe -124 ki te 2.
x=60 x=-62
Kua oti te whārite te whakatau.
x^{2}+2x-3720=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+2x-3720-\left(-3720\right)=-\left(-3720\right)
Me tāpiri 3720 ki ngā taha e rua o te whārite.
x^{2}+2x=-\left(-3720\right)
Mā te tango i te -3720 i a ia ake anō ka toe ko te 0.
x^{2}+2x=3720
Tango -3720 mai i 0.
x^{2}+2x+1^{2}=3720+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=3720+1
Pūrua 1.
x^{2}+2x+1=3721
Tāpiri 3720 ki te 1.
\left(x+1\right)^{2}=3721
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{3721}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=61 x+1=-61
Whakarūnātia.
x=60 x=-62
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}