Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-2x^{2}+2x+x-2x^{2}-1
Pahekotia te x^{2} me -3x^{2}, ka -2x^{2}.
-2x^{2}+3x-2x^{2}-1
Pahekotia te 2x me x, ka 3x.
-4x^{2}+3x-1
Pahekotia te -2x^{2} me -2x^{2}, ka -4x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-2x^{2}+2x+x-2x^{2}-1)
Pahekotia te x^{2} me -3x^{2}, ka -2x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-2x^{2}+3x-2x^{2}-1)
Pahekotia te 2x me x, ka 3x.
\frac{\mathrm{d}}{\mathrm{d}x}(-4x^{2}+3x-1)
Pahekotia te -2x^{2} me -2x^{2}, ka -4x^{2}.
2\left(-4\right)x^{2-1}+3x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-8x^{2-1}+3x^{1-1}
Whakareatia 2 ki te -4.
-8x^{1}+3x^{1-1}
Tango 1 mai i 2.
-8x^{1}+3x^{0}
Tango 1 mai i 1.
-8x+3x^{0}
Mō tētahi kupu t, t^{1}=t.
-8x+3\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
-8x+3
Mō tētahi kupu t, t\times 1=t me 1t=t.