Whakaoti mō x (complex solution)
x=-1+\sqrt{2}i\approx -1+1.414213562i
x=-\sqrt{2}i-1\approx -1-1.414213562i
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+2x=-3
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}+2x-\left(-3\right)=-3-\left(-3\right)
Me tāpiri 3 ki ngā taha e rua o te whārite.
x^{2}+2x-\left(-3\right)=0
Mā te tango i te -3 i a ia ake anō ka toe ko te 0.
x^{2}+2x+3=0
Tango -3 mai i 0.
x=\frac{-2±\sqrt{2^{2}-4\times 3}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 3}}{2}
Pūrua 2.
x=\frac{-2±\sqrt{4-12}}{2}
Whakareatia -4 ki te 3.
x=\frac{-2±\sqrt{-8}}{2}
Tāpiri 4 ki te -12.
x=\frac{-2±2\sqrt{2}i}{2}
Tuhia te pūtakerua o te -8.
x=\frac{-2+2\sqrt{2}i}{2}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{2}i}{2} ina he tāpiri te ±. Tāpiri -2 ki te 2i\sqrt{2}.
x=-1+\sqrt{2}i
Whakawehe -2+2i\sqrt{2} ki te 2.
x=\frac{-2\sqrt{2}i-2}{2}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{2}i}{2} ina he tango te ±. Tango 2i\sqrt{2} mai i -2.
x=-\sqrt{2}i-1
Whakawehe -2-2i\sqrt{2} ki te 2.
x=-1+\sqrt{2}i x=-\sqrt{2}i-1
Kua oti te whārite te whakatau.
x^{2}+2x=-3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+2x+1^{2}=-3+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=-3+1
Pūrua 1.
x^{2}+2x+1=-2
Tāpiri -3 ki te 1.
\left(x+1\right)^{2}=-2
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\sqrt{2}i x+1=-\sqrt{2}i
Whakarūnātia.
x=-1+\sqrt{2}i x=-\sqrt{2}i-1
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}