Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+2x+10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\times 10}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 10}}{2}
Pūrua 2.
x=\frac{-2±\sqrt{4-40}}{2}
Whakareatia -4 ki te 10.
x=\frac{-2±\sqrt{-36}}{2}
Tāpiri 4 ki te -40.
x=\frac{-2±6i}{2}
Tuhia te pūtakerua o te -36.
x=\frac{-2+6i}{2}
Nā, me whakaoti te whārite x=\frac{-2±6i}{2} ina he tāpiri te ±. Tāpiri -2 ki te 6i.
x=-1+3i
Whakawehe -2+6i ki te 2.
x=\frac{-2-6i}{2}
Nā, me whakaoti te whārite x=\frac{-2±6i}{2} ina he tango te ±. Tango 6i mai i -2.
x=-1-3i
Whakawehe -2-6i ki te 2.
x=-1+3i x=-1-3i
Kua oti te whārite te whakatau.
x^{2}+2x+10=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+2x+10-10=-10
Me tango 10 mai i ngā taha e rua o te whārite.
x^{2}+2x=-10
Mā te tango i te 10 i a ia ake anō ka toe ko te 0.
x^{2}+2x+1^{2}=-10+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=-10+1
Pūrua 1.
x^{2}+2x+1=-9
Tāpiri -10 ki te 1.
\left(x+1\right)^{2}=-9
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=3i x+1=-3i
Whakarūnātia.
x=-1+3i x=-1-3i
Me tango 1 mai i ngā taha e rua o te whārite.