Aromātai
2x^{4}-2x^{3}+x^{2}-4
Kimi Pārōnaki e ai ki x
2x\left(4x^{2}-3x+1\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+2x^{4}-2xx^{2}-4
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 3 kia riro ai te 4.
x^{2}+2x^{4}-2x^{3}-4
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+2x^{4}-2xx^{2}-4)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 3 kia riro ai te 4.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+2x^{4}-2x^{3}-4)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
2x^{2-1}+4\times 2x^{4-1}+3\left(-2\right)x^{3-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
2x^{1}+4\times 2x^{4-1}+3\left(-2\right)x^{3-1}
Tango 1 mai i 2.
2x^{1}+8x^{4-1}+3\left(-2\right)x^{3-1}
Whakareatia 4 ki te 2.
2x^{1}+8x^{3}+3\left(-2\right)x^{3-1}
Tango 1 mai i 4.
2x^{1}+8x^{3}-6x^{3-1}
Whakareatia 4 ki te 2.
2x^{1}+8x^{3}-6x^{2}
Tango 1 mai i 3.
2x+8x^{3}-6x^{2}
Mō tētahi kupu t, t^{1}=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}