Tauwehe
\left(x+6\right)\left(x+13\right)
Aromātai
\left(x+6\right)\left(x+13\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=19 ab=1\times 78=78
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx+78. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,78 2,39 3,26 6,13
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 78.
1+78=79 2+39=41 3+26=29 6+13=19
Tātaihia te tapeke mō ia takirua.
a=6 b=13
Ko te otinga te takirua ka hoatu i te tapeke 19.
\left(x^{2}+6x\right)+\left(13x+78\right)
Tuhia anō te x^{2}+19x+78 hei \left(x^{2}+6x\right)+\left(13x+78\right).
x\left(x+6\right)+13\left(x+6\right)
Tauwehea te x i te tuatahi me te 13 i te rōpū tuarua.
\left(x+6\right)\left(x+13\right)
Whakatauwehea atu te kīanga pātahi x+6 mā te whakamahi i te āhuatanga tātai tohatoha.
x^{2}+19x+78=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-19±\sqrt{19^{2}-4\times 78}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-19±\sqrt{361-4\times 78}}{2}
Pūrua 19.
x=\frac{-19±\sqrt{361-312}}{2}
Whakareatia -4 ki te 78.
x=\frac{-19±\sqrt{49}}{2}
Tāpiri 361 ki te -312.
x=\frac{-19±7}{2}
Tuhia te pūtakerua o te 49.
x=-\frac{12}{2}
Nā, me whakaoti te whārite x=\frac{-19±7}{2} ina he tāpiri te ±. Tāpiri -19 ki te 7.
x=-6
Whakawehe -12 ki te 2.
x=-\frac{26}{2}
Nā, me whakaoti te whārite x=\frac{-19±7}{2} ina he tango te ±. Tango 7 mai i -19.
x=-13
Whakawehe -26 ki te 2.
x^{2}+19x+78=\left(x-\left(-6\right)\right)\left(x-\left(-13\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -6 mō te x_{1} me te -13 mō te x_{2}.
x^{2}+19x+78=\left(x+6\right)\left(x+13\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}