Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+18x+81=63
Tāpirihia te -18 ki te 81, ka 63.
x^{2}+18x+81-63=0
Tangohia te 63 mai i ngā taha e rua.
x^{2}+18x+18=0
Tangohia te 63 i te 81, ka 18.
x=\frac{-18±\sqrt{18^{2}-4\times 18}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 18 mō b, me 18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 18}}{2}
Pūrua 18.
x=\frac{-18±\sqrt{324-72}}{2}
Whakareatia -4 ki te 18.
x=\frac{-18±\sqrt{252}}{2}
Tāpiri 324 ki te -72.
x=\frac{-18±6\sqrt{7}}{2}
Tuhia te pūtakerua o te 252.
x=\frac{6\sqrt{7}-18}{2}
Nā, me whakaoti te whārite x=\frac{-18±6\sqrt{7}}{2} ina he tāpiri te ±. Tāpiri -18 ki te 6\sqrt{7}.
x=3\sqrt{7}-9
Whakawehe -18+6\sqrt{7} ki te 2.
x=\frac{-6\sqrt{7}-18}{2}
Nā, me whakaoti te whārite x=\frac{-18±6\sqrt{7}}{2} ina he tango te ±. Tango 6\sqrt{7} mai i -18.
x=-3\sqrt{7}-9
Whakawehe -18-6\sqrt{7} ki te 2.
x=3\sqrt{7}-9 x=-3\sqrt{7}-9
Kua oti te whārite te whakatau.
x^{2}+18x+81=63
Tāpiri -18 ki te 81.
\left(x+9\right)^{2}=63
Tauwehea x^{2}+18x+81. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+9\right)^{2}}=\sqrt{63}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+9=3\sqrt{7} x+9=-3\sqrt{7}
Whakarūnātia.
x=3\sqrt{7}-9 x=-3\sqrt{7}-9
Me tango 9 mai i ngā taha e rua o te whārite.