Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+18x+79=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-18±\sqrt{18^{2}-4\times 79}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 18 mō b, me 79 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 79}}{2}
Pūrua 18.
x=\frac{-18±\sqrt{324-316}}{2}
Whakareatia -4 ki te 79.
x=\frac{-18±\sqrt{8}}{2}
Tāpiri 324 ki te -316.
x=\frac{-18±2\sqrt{2}}{2}
Tuhia te pūtakerua o te 8.
x=\frac{2\sqrt{2}-18}{2}
Nā, me whakaoti te whārite x=\frac{-18±2\sqrt{2}}{2} ina he tāpiri te ±. Tāpiri -18 ki te 2\sqrt{2}.
x=\sqrt{2}-9
Whakawehe -18+2\sqrt{2} ki te 2.
x=\frac{-2\sqrt{2}-18}{2}
Nā, me whakaoti te whārite x=\frac{-18±2\sqrt{2}}{2} ina he tango te ±. Tango 2\sqrt{2} mai i -18.
x=-\sqrt{2}-9
Whakawehe -18-2\sqrt{2} ki te 2.
x=\sqrt{2}-9 x=-\sqrt{2}-9
Kua oti te whārite te whakatau.
x^{2}+18x+79=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+18x+79-79=-79
Me tango 79 mai i ngā taha e rua o te whārite.
x^{2}+18x=-79
Mā te tango i te 79 i a ia ake anō ka toe ko te 0.
x^{2}+18x+9^{2}=-79+9^{2}
Whakawehea te 18, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 9. Nā, tāpiria te pūrua o te 9 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+18x+81=-79+81
Pūrua 9.
x^{2}+18x+81=2
Tāpiri -79 ki te 81.
\left(x+9\right)^{2}=2
Tauwehea x^{2}+18x+81. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+9\right)^{2}}=\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+9=\sqrt{2} x+9=-\sqrt{2}
Whakarūnātia.
x=\sqrt{2}-9 x=-\sqrt{2}-9
Me tango 9 mai i ngā taha e rua o te whārite.
x^{2}+18x+79=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-18±\sqrt{18^{2}-4\times 79}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 18 mō b, me 79 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 79}}{2}
Pūrua 18.
x=\frac{-18±\sqrt{324-316}}{2}
Whakareatia -4 ki te 79.
x=\frac{-18±\sqrt{8}}{2}
Tāpiri 324 ki te -316.
x=\frac{-18±2\sqrt{2}}{2}
Tuhia te pūtakerua o te 8.
x=\frac{2\sqrt{2}-18}{2}
Nā, me whakaoti te whārite x=\frac{-18±2\sqrt{2}}{2} ina he tāpiri te ±. Tāpiri -18 ki te 2\sqrt{2}.
x=\sqrt{2}-9
Whakawehe -18+2\sqrt{2} ki te 2.
x=\frac{-2\sqrt{2}-18}{2}
Nā, me whakaoti te whārite x=\frac{-18±2\sqrt{2}}{2} ina he tango te ±. Tango 2\sqrt{2} mai i -18.
x=-\sqrt{2}-9
Whakawehe -18-2\sqrt{2} ki te 2.
x=\sqrt{2}-9 x=-\sqrt{2}-9
Kua oti te whārite te whakatau.
x^{2}+18x+79=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+18x+79-79=-79
Me tango 79 mai i ngā taha e rua o te whārite.
x^{2}+18x=-79
Mā te tango i te 79 i a ia ake anō ka toe ko te 0.
x^{2}+18x+9^{2}=-79+9^{2}
Whakawehea te 18, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 9. Nā, tāpiria te pūrua o te 9 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+18x+81=-79+81
Pūrua 9.
x^{2}+18x+81=2
Tāpiri -79 ki te 81.
\left(x+9\right)^{2}=2
Tauwehea x^{2}+18x+81. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+9\right)^{2}}=\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+9=\sqrt{2} x+9=-\sqrt{2}
Whakarūnātia.
x=\sqrt{2}-9 x=-\sqrt{2}-9
Me tango 9 mai i ngā taha e rua o te whārite.