Tauwehe
\left(x-\frac{-\sqrt{265}-17}{2}\right)\left(x-\frac{\sqrt{265}-17}{2}\right)
Aromātai
x^{2}+17x+6
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+17x+6=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-17±\sqrt{17^{2}-4\times 6}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-17±\sqrt{289-4\times 6}}{2}
Pūrua 17.
x=\frac{-17±\sqrt{289-24}}{2}
Whakareatia -4 ki te 6.
x=\frac{-17±\sqrt{265}}{2}
Tāpiri 289 ki te -24.
x=\frac{\sqrt{265}-17}{2}
Nā, me whakaoti te whārite x=\frac{-17±\sqrt{265}}{2} ina he tāpiri te ±. Tāpiri -17 ki te \sqrt{265}.
x=\frac{-\sqrt{265}-17}{2}
Nā, me whakaoti te whārite x=\frac{-17±\sqrt{265}}{2} ina he tango te ±. Tango \sqrt{265} mai i -17.
x^{2}+17x+6=\left(x-\frac{\sqrt{265}-17}{2}\right)\left(x-\frac{-\sqrt{265}-17}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-17+\sqrt{265}}{2} mō te x_{1} me te \frac{-17-\sqrt{265}}{2} mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}