Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=15 ab=1\times 56=56
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx+56. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,56 2,28 4,14 7,8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 56.
1+56=57 2+28=30 4+14=18 7+8=15
Tātaihia te tapeke mō ia takirua.
a=7 b=8
Ko te otinga te takirua ka hoatu i te tapeke 15.
\left(x^{2}+7x\right)+\left(8x+56\right)
Tuhia anō te x^{2}+15x+56 hei \left(x^{2}+7x\right)+\left(8x+56\right).
x\left(x+7\right)+8\left(x+7\right)
Tauwehea te x i te tuatahi me te 8 i te rōpū tuarua.
\left(x+7\right)\left(x+8\right)
Whakatauwehea atu te kīanga pātahi x+7 mā te whakamahi i te āhuatanga tātai tohatoha.
x^{2}+15x+56=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-15±\sqrt{15^{2}-4\times 56}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-15±\sqrt{225-4\times 56}}{2}
Pūrua 15.
x=\frac{-15±\sqrt{225-224}}{2}
Whakareatia -4 ki te 56.
x=\frac{-15±\sqrt{1}}{2}
Tāpiri 225 ki te -224.
x=\frac{-15±1}{2}
Tuhia te pūtakerua o te 1.
x=-\frac{14}{2}
Nā, me whakaoti te whārite x=\frac{-15±1}{2} ina he tāpiri te ±. Tāpiri -15 ki te 1.
x=-7
Whakawehe -14 ki te 2.
x=-\frac{16}{2}
Nā, me whakaoti te whārite x=\frac{-15±1}{2} ina he tango te ±. Tango 1 mai i -15.
x=-8
Whakawehe -16 ki te 2.
x^{2}+15x+56=\left(x-\left(-7\right)\right)\left(x-\left(-8\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -7 mō te x_{1} me te -8 mō te x_{2}.
x^{2}+15x+56=\left(x+7\right)\left(x+8\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.