Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=14 ab=45
Hei whakaoti i te whārite, whakatauwehea te x^{2}+14x+45 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,45 3,15 5,9
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 45.
1+45=46 3+15=18 5+9=14
Tātaihia te tapeke mō ia takirua.
a=5 b=9
Ko te otinga te takirua ka hoatu i te tapeke 14.
\left(x+5\right)\left(x+9\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=-5 x=-9
Hei kimi otinga whārite, me whakaoti te x+5=0 me te x+9=0.
a+b=14 ab=1\times 45=45
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+45. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,45 3,15 5,9
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 45.
1+45=46 3+15=18 5+9=14
Tātaihia te tapeke mō ia takirua.
a=5 b=9
Ko te otinga te takirua ka hoatu i te tapeke 14.
\left(x^{2}+5x\right)+\left(9x+45\right)
Tuhia anō te x^{2}+14x+45 hei \left(x^{2}+5x\right)+\left(9x+45\right).
x\left(x+5\right)+9\left(x+5\right)
Tauwehea te x i te tuatahi me te 9 i te rōpū tuarua.
\left(x+5\right)\left(x+9\right)
Whakatauwehea atu te kīanga pātahi x+5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-5 x=-9
Hei kimi otinga whārite, me whakaoti te x+5=0 me te x+9=0.
x^{2}+14x+45=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-14±\sqrt{14^{2}-4\times 45}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 14 mō b, me 45 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\times 45}}{2}
Pūrua 14.
x=\frac{-14±\sqrt{196-180}}{2}
Whakareatia -4 ki te 45.
x=\frac{-14±\sqrt{16}}{2}
Tāpiri 196 ki te -180.
x=\frac{-14±4}{2}
Tuhia te pūtakerua o te 16.
x=-\frac{10}{2}
Nā, me whakaoti te whārite x=\frac{-14±4}{2} ina he tāpiri te ±. Tāpiri -14 ki te 4.
x=-5
Whakawehe -10 ki te 2.
x=-\frac{18}{2}
Nā, me whakaoti te whārite x=\frac{-14±4}{2} ina he tango te ±. Tango 4 mai i -14.
x=-9
Whakawehe -18 ki te 2.
x=-5 x=-9
Kua oti te whārite te whakatau.
x^{2}+14x+45=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+14x+45-45=-45
Me tango 45 mai i ngā taha e rua o te whārite.
x^{2}+14x=-45
Mā te tango i te 45 i a ia ake anō ka toe ko te 0.
x^{2}+14x+7^{2}=-45+7^{2}
Whakawehea te 14, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 7. Nā, tāpiria te pūrua o te 7 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+14x+49=-45+49
Pūrua 7.
x^{2}+14x+49=4
Tāpiri -45 ki te 49.
\left(x+7\right)^{2}=4
Tauwehea x^{2}+14x+49. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+7=2 x+7=-2
Whakarūnātia.
x=-5 x=-9
Me tango 7 mai i ngā taha e rua o te whārite.