Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+13x+15=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-13±\sqrt{13^{2}-4\times 15}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 13 mō b, me 15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\times 15}}{2}
Pūrua 13.
x=\frac{-13±\sqrt{169-60}}{2}
Whakareatia -4 ki te 15.
x=\frac{-13±\sqrt{109}}{2}
Tāpiri 169 ki te -60.
x=\frac{\sqrt{109}-13}{2}
Nā, me whakaoti te whārite x=\frac{-13±\sqrt{109}}{2} ina he tāpiri te ±. Tāpiri -13 ki te \sqrt{109}.
x=\frac{-\sqrt{109}-13}{2}
Nā, me whakaoti te whārite x=\frac{-13±\sqrt{109}}{2} ina he tango te ±. Tango \sqrt{109} mai i -13.
x=\frac{\sqrt{109}-13}{2} x=\frac{-\sqrt{109}-13}{2}
Kua oti te whārite te whakatau.
x^{2}+13x+15=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+13x+15-15=-15
Me tango 15 mai i ngā taha e rua o te whārite.
x^{2}+13x=-15
Mā te tango i te 15 i a ia ake anō ka toe ko te 0.
x^{2}+13x+\left(\frac{13}{2}\right)^{2}=-15+\left(\frac{13}{2}\right)^{2}
Whakawehea te 13, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{13}{2}. Nā, tāpiria te pūrua o te \frac{13}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+13x+\frac{169}{4}=-15+\frac{169}{4}
Pūruatia \frac{13}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+13x+\frac{169}{4}=\frac{109}{4}
Tāpiri -15 ki te \frac{169}{4}.
\left(x+\frac{13}{2}\right)^{2}=\frac{109}{4}
Tauwehea x^{2}+13x+\frac{169}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{2}\right)^{2}}=\sqrt{\frac{109}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{13}{2}=\frac{\sqrt{109}}{2} x+\frac{13}{2}=-\frac{\sqrt{109}}{2}
Whakarūnātia.
x=\frac{\sqrt{109}-13}{2} x=\frac{-\sqrt{109}-13}{2}
Me tango \frac{13}{2} mai i ngā taha e rua o te whārite.