Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+12x-13=0
Tangohia te 13 mai i ngā taha e rua.
a+b=12 ab=-13
Hei whakaoti i te whārite, whakatauwehea te x^{2}+12x-13 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=13
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x-1\right)\left(x+13\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=1 x=-13
Hei kimi otinga whārite, me whakaoti te x-1=0 me te x+13=0.
x^{2}+12x-13=0
Tangohia te 13 mai i ngā taha e rua.
a+b=12 ab=1\left(-13\right)=-13
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-13. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=13
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-x\right)+\left(13x-13\right)
Tuhia anō te x^{2}+12x-13 hei \left(x^{2}-x\right)+\left(13x-13\right).
x\left(x-1\right)+13\left(x-1\right)
Tauwehea te x i te tuatahi me te 13 i te rōpū tuarua.
\left(x-1\right)\left(x+13\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-13
Hei kimi otinga whārite, me whakaoti te x-1=0 me te x+13=0.
x^{2}+12x=13
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}+12x-13=13-13
Me tango 13 mai i ngā taha e rua o te whārite.
x^{2}+12x-13=0
Mā te tango i te 13 i a ia ake anō ka toe ko te 0.
x=\frac{-12±\sqrt{12^{2}-4\left(-13\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 12 mō b, me -13 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-13\right)}}{2}
Pūrua 12.
x=\frac{-12±\sqrt{144+52}}{2}
Whakareatia -4 ki te -13.
x=\frac{-12±\sqrt{196}}{2}
Tāpiri 144 ki te 52.
x=\frac{-12±14}{2}
Tuhia te pūtakerua o te 196.
x=\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{-12±14}{2} ina he tāpiri te ±. Tāpiri -12 ki te 14.
x=1
Whakawehe 2 ki te 2.
x=-\frac{26}{2}
Nā, me whakaoti te whārite x=\frac{-12±14}{2} ina he tango te ±. Tango 14 mai i -12.
x=-13
Whakawehe -26 ki te 2.
x=1 x=-13
Kua oti te whārite te whakatau.
x^{2}+12x=13
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+12x+6^{2}=13+6^{2}
Whakawehea te 12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 6. Nā, tāpiria te pūrua o te 6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+12x+36=13+36
Pūrua 6.
x^{2}+12x+36=49
Tāpiri 13 ki te 36.
\left(x+6\right)^{2}=49
Tauwehea x^{2}+12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{49}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+6=7 x+6=-7
Whakarūnātia.
x=1 x=-13
Me tango 6 mai i ngā taha e rua o te whārite.