Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=12 ab=36
Hei whakaoti i te whārite, whakatauwehea te x^{2}+12x+36 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,36 2,18 3,12 4,9 6,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Tātaihia te tapeke mō ia takirua.
a=6 b=6
Ko te otinga te takirua ka hoatu i te tapeke 12.
\left(x+6\right)\left(x+6\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
\left(x+6\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=-6
Hei kimi i te otinga whārite, whakaotia te x+6=0.
a+b=12 ab=1\times 36=36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+36. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,36 2,18 3,12 4,9 6,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Tātaihia te tapeke mō ia takirua.
a=6 b=6
Ko te otinga te takirua ka hoatu i te tapeke 12.
\left(x^{2}+6x\right)+\left(6x+36\right)
Tuhia anō te x^{2}+12x+36 hei \left(x^{2}+6x\right)+\left(6x+36\right).
x\left(x+6\right)+6\left(x+6\right)
Tauwehea te x i te tuatahi me te 6 i te rōpū tuarua.
\left(x+6\right)\left(x+6\right)
Whakatauwehea atu te kīanga pātahi x+6 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(x+6\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=-6
Hei kimi i te otinga whārite, whakaotia te x+6=0.
x^{2}+12x+36=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-12±\sqrt{12^{2}-4\times 36}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 12 mō b, me 36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 36}}{2}
Pūrua 12.
x=\frac{-12±\sqrt{144-144}}{2}
Whakareatia -4 ki te 36.
x=\frac{-12±\sqrt{0}}{2}
Tāpiri 144 ki te -144.
x=-\frac{12}{2}
Tuhia te pūtakerua o te 0.
x=-6
Whakawehe -12 ki te 2.
\left(x+6\right)^{2}=0
Tauwehea x^{2}+12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+6=0 x+6=0
Whakarūnātia.
x=-6 x=-6
Me tango 6 mai i ngā taha e rua o te whārite.
x=-6
Kua oti te whārite te whakatau. He ōrite ngā whakatau.