Whakaoti mō x
x=-8
x=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=12 ab=32
Hei whakaoti i te whārite, whakatauwehea te x^{2}+12x+32 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,32 2,16 4,8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 32.
1+32=33 2+16=18 4+8=12
Tātaihia te tapeke mō ia takirua.
a=4 b=8
Ko te otinga te takirua ka hoatu i te tapeke 12.
\left(x+4\right)\left(x+8\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=-4 x=-8
Hei kimi otinga whārite, me whakaoti te x+4=0 me te x+8=0.
a+b=12 ab=1\times 32=32
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+32. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,32 2,16 4,8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 32.
1+32=33 2+16=18 4+8=12
Tātaihia te tapeke mō ia takirua.
a=4 b=8
Ko te otinga te takirua ka hoatu i te tapeke 12.
\left(x^{2}+4x\right)+\left(8x+32\right)
Tuhia anō te x^{2}+12x+32 hei \left(x^{2}+4x\right)+\left(8x+32\right).
x\left(x+4\right)+8\left(x+4\right)
Tauwehea te x i te tuatahi me te 8 i te rōpū tuarua.
\left(x+4\right)\left(x+8\right)
Whakatauwehea atu te kīanga pātahi x+4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-4 x=-8
Hei kimi otinga whārite, me whakaoti te x+4=0 me te x+8=0.
x^{2}+12x+32=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-12±\sqrt{12^{2}-4\times 32}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 12 mō b, me 32 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 32}}{2}
Pūrua 12.
x=\frac{-12±\sqrt{144-128}}{2}
Whakareatia -4 ki te 32.
x=\frac{-12±\sqrt{16}}{2}
Tāpiri 144 ki te -128.
x=\frac{-12±4}{2}
Tuhia te pūtakerua o te 16.
x=-\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{-12±4}{2} ina he tāpiri te ±. Tāpiri -12 ki te 4.
x=-4
Whakawehe -8 ki te 2.
x=-\frac{16}{2}
Nā, me whakaoti te whārite x=\frac{-12±4}{2} ina he tango te ±. Tango 4 mai i -12.
x=-8
Whakawehe -16 ki te 2.
x=-4 x=-8
Kua oti te whārite te whakatau.
x^{2}+12x+32=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+12x+32-32=-32
Me tango 32 mai i ngā taha e rua o te whārite.
x^{2}+12x=-32
Mā te tango i te 32 i a ia ake anō ka toe ko te 0.
x^{2}+12x+6^{2}=-32+6^{2}
Whakawehea te 12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 6. Nā, tāpiria te pūrua o te 6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+12x+36=-32+36
Pūrua 6.
x^{2}+12x+36=4
Tāpiri -32 ki te 36.
\left(x+6\right)^{2}=4
Tauwehea x^{2}+12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+6=2 x+6=-2
Whakarūnātia.
x=-4 x=-8
Me tango 6 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}