Whakaoti mō x
x=-5
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{x^{2}+11}=42-\left(x^{2}+11\right)
Me tango x^{2}+11 mai i ngā taha e rua o te whārite.
\sqrt{x^{2}+11}=42-x^{2}-11
Hei kimi i te tauaro o x^{2}+11, kimihia te tauaro o ia taurangi.
\sqrt{x^{2}+11}=31-x^{2}
Tangohia te 11 i te 42, ka 31.
\left(\sqrt{x^{2}+11}\right)^{2}=\left(31-x^{2}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}+11=\left(31-x^{2}\right)^{2}
Tātaihia te \sqrt{x^{2}+11} mā te pū o 2, kia riro ko x^{2}+11.
x^{2}+11=961-62x^{2}+\left(x^{2}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(31-x^{2}\right)^{2}.
x^{2}+11=961-62x^{2}+x^{4}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
x^{2}+11-961=-62x^{2}+x^{4}
Tangohia te 961 mai i ngā taha e rua.
x^{2}-950=-62x^{2}+x^{4}
Tangohia te 961 i te 11, ka -950.
x^{2}-950+62x^{2}=x^{4}
Me tāpiri te 62x^{2} ki ngā taha e rua.
63x^{2}-950=x^{4}
Pahekotia te x^{2} me 62x^{2}, ka 63x^{2}.
63x^{2}-950-x^{4}=0
Tangohia te x^{4} mai i ngā taha e rua.
-t^{2}+63t-950=0
Whakakapia te t mō te x^{2}.
t=\frac{-63±\sqrt{63^{2}-4\left(-1\right)\left(-950\right)}}{-2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te -1 mō te a, te 63 mō te b, me te -950 mō te c i te ture pūrua.
t=\frac{-63±13}{-2}
Mahia ngā tātaitai.
t=25 t=38
Whakaotia te whārite t=\frac{-63±13}{-2} ina he tōrunga te ±, ina he tōraro te ±.
x=5 x=-5 x=\sqrt{38} x=-\sqrt{38}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.
5^{2}+11+\sqrt{5^{2}+11}=42
Whakakapia te 5 mō te x i te whārite x^{2}+11+\sqrt{x^{2}+11}=42.
42=42
Whakarūnātia. Ko te uara x=5 kua ngata te whārite.
\left(-5\right)^{2}+11+\sqrt{\left(-5\right)^{2}+11}=42
Whakakapia te -5 mō te x i te whārite x^{2}+11+\sqrt{x^{2}+11}=42.
42=42
Whakarūnātia. Ko te uara x=-5 kua ngata te whārite.
\left(\sqrt{38}\right)^{2}+11+\sqrt{\left(\sqrt{38}\right)^{2}+11}=42
Whakakapia te \sqrt{38} mō te x i te whārite x^{2}+11+\sqrt{x^{2}+11}=42.
56=42
Whakarūnātia. Ko te uara x=\sqrt{38} kāore e ngata ana ki te whārite.
\left(-\sqrt{38}\right)^{2}+11+\sqrt{\left(-\sqrt{38}\right)^{2}+11}=42
Whakakapia te -\sqrt{38} mō te x i te whārite x^{2}+11+\sqrt{x^{2}+11}=42.
56=42
Whakarūnātia. Ko te uara x=-\sqrt{38} kāore e ngata ana ki te whārite.
x=5 x=-5
Rārangihia ngā rongoā katoa o \sqrt{x^{2}+11}=31-x^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}