Whakaoti mō x
x=-60
x=50
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=10 ab=-3000
Hei whakaoti i te whārite, whakatauwehea te x^{2}+10x-3000 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,3000 -2,1500 -3,1000 -4,750 -5,600 -6,500 -8,375 -10,300 -12,250 -15,200 -20,150 -24,125 -25,120 -30,100 -40,75 -50,60
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -3000.
-1+3000=2999 -2+1500=1498 -3+1000=997 -4+750=746 -5+600=595 -6+500=494 -8+375=367 -10+300=290 -12+250=238 -15+200=185 -20+150=130 -24+125=101 -25+120=95 -30+100=70 -40+75=35 -50+60=10
Tātaihia te tapeke mō ia takirua.
a=-50 b=60
Ko te otinga te takirua ka hoatu i te tapeke 10.
\left(x-50\right)\left(x+60\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=50 x=-60
Hei kimi otinga whārite, me whakaoti te x-50=0 me te x+60=0.
a+b=10 ab=1\left(-3000\right)=-3000
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-3000. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,3000 -2,1500 -3,1000 -4,750 -5,600 -6,500 -8,375 -10,300 -12,250 -15,200 -20,150 -24,125 -25,120 -30,100 -40,75 -50,60
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -3000.
-1+3000=2999 -2+1500=1498 -3+1000=997 -4+750=746 -5+600=595 -6+500=494 -8+375=367 -10+300=290 -12+250=238 -15+200=185 -20+150=130 -24+125=101 -25+120=95 -30+100=70 -40+75=35 -50+60=10
Tātaihia te tapeke mō ia takirua.
a=-50 b=60
Ko te otinga te takirua ka hoatu i te tapeke 10.
\left(x^{2}-50x\right)+\left(60x-3000\right)
Tuhia anō te x^{2}+10x-3000 hei \left(x^{2}-50x\right)+\left(60x-3000\right).
x\left(x-50\right)+60\left(x-50\right)
Tauwehea te x i te tuatahi me te 60 i te rōpū tuarua.
\left(x-50\right)\left(x+60\right)
Whakatauwehea atu te kīanga pātahi x-50 mā te whakamahi i te āhuatanga tātai tohatoha.
x=50 x=-60
Hei kimi otinga whārite, me whakaoti te x-50=0 me te x+60=0.
x^{2}+10x-3000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-10±\sqrt{10^{2}-4\left(-3000\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 10 mō b, me -3000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-3000\right)}}{2}
Pūrua 10.
x=\frac{-10±\sqrt{100+12000}}{2}
Whakareatia -4 ki te -3000.
x=\frac{-10±\sqrt{12100}}{2}
Tāpiri 100 ki te 12000.
x=\frac{-10±110}{2}
Tuhia te pūtakerua o te 12100.
x=\frac{100}{2}
Nā, me whakaoti te whārite x=\frac{-10±110}{2} ina he tāpiri te ±. Tāpiri -10 ki te 110.
x=50
Whakawehe 100 ki te 2.
x=-\frac{120}{2}
Nā, me whakaoti te whārite x=\frac{-10±110}{2} ina he tango te ±. Tango 110 mai i -10.
x=-60
Whakawehe -120 ki te 2.
x=50 x=-60
Kua oti te whārite te whakatau.
x^{2}+10x-3000=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+10x-3000-\left(-3000\right)=-\left(-3000\right)
Me tāpiri 3000 ki ngā taha e rua o te whārite.
x^{2}+10x=-\left(-3000\right)
Mā te tango i te -3000 i a ia ake anō ka toe ko te 0.
x^{2}+10x=3000
Tango -3000 mai i 0.
x^{2}+10x+5^{2}=3000+5^{2}
Whakawehea te 10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 5. Nā, tāpiria te pūrua o te 5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+10x+25=3000+25
Pūrua 5.
x^{2}+10x+25=3025
Tāpiri 3000 ki te 25.
\left(x+5\right)^{2}=3025
Tauwehea x^{2}+10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{3025}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+5=55 x+5=-55
Whakarūnātia.
x=50 x=-60
Me tango 5 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}