Whakaoti mō x
x=-5
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=10 ab=25
Hei whakaoti i te whārite, whakatauwehea te x^{2}+10x+25 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,25 5,5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 25.
1+25=26 5+5=10
Tātaihia te tapeke mō ia takirua.
a=5 b=5
Ko te otinga te takirua ka hoatu i te tapeke 10.
\left(x+5\right)\left(x+5\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
\left(x+5\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=-5
Hei kimi i te otinga whārite, whakaotia te x+5=0.
a+b=10 ab=1\times 25=25
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+25. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,25 5,5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 25.
1+25=26 5+5=10
Tātaihia te tapeke mō ia takirua.
a=5 b=5
Ko te otinga te takirua ka hoatu i te tapeke 10.
\left(x^{2}+5x\right)+\left(5x+25\right)
Tuhia anō te x^{2}+10x+25 hei \left(x^{2}+5x\right)+\left(5x+25\right).
x\left(x+5\right)+5\left(x+5\right)
Tauwehea te x i te tuatahi me te 5 i te rōpū tuarua.
\left(x+5\right)\left(x+5\right)
Whakatauwehea atu te kīanga pātahi x+5 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(x+5\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=-5
Hei kimi i te otinga whārite, whakaotia te x+5=0.
x^{2}+10x+25=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-10±\sqrt{10^{2}-4\times 25}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 10 mō b, me 25 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 25}}{2}
Pūrua 10.
x=\frac{-10±\sqrt{100-100}}{2}
Whakareatia -4 ki te 25.
x=\frac{-10±\sqrt{0}}{2}
Tāpiri 100 ki te -100.
x=-\frac{10}{2}
Tuhia te pūtakerua o te 0.
x=-5
Whakawehe -10 ki te 2.
\left(x+5\right)^{2}=0
Tauwehea x^{2}+10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+5=0 x+5=0
Whakarūnātia.
x=-5 x=-5
Me tango 5 mai i ngā taha e rua o te whārite.
x=-5
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}