Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+80x-5\times 40=0
Whakareatia te 1 ki te 80, ka 80.
x^{2}+80x-200=0
Whakareatia te 5 ki te 40, ka 200.
x=\frac{-80±\sqrt{80^{2}-4\left(-200\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 80 mō b, me -200 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-80±\sqrt{6400-4\left(-200\right)}}{2}
Pūrua 80.
x=\frac{-80±\sqrt{6400+800}}{2}
Whakareatia -4 ki te -200.
x=\frac{-80±\sqrt{7200}}{2}
Tāpiri 6400 ki te 800.
x=\frac{-80±60\sqrt{2}}{2}
Tuhia te pūtakerua o te 7200.
x=\frac{60\sqrt{2}-80}{2}
Nā, me whakaoti te whārite x=\frac{-80±60\sqrt{2}}{2} ina he tāpiri te ±. Tāpiri -80 ki te 60\sqrt{2}.
x=30\sqrt{2}-40
Whakawehe -80+60\sqrt{2} ki te 2.
x=\frac{-60\sqrt{2}-80}{2}
Nā, me whakaoti te whārite x=\frac{-80±60\sqrt{2}}{2} ina he tango te ±. Tango 60\sqrt{2} mai i -80.
x=-30\sqrt{2}-40
Whakawehe -80-60\sqrt{2} ki te 2.
x=30\sqrt{2}-40 x=-30\sqrt{2}-40
Kua oti te whārite te whakatau.
x^{2}+80x-5\times 40=0
Whakareatia te 1 ki te 80, ka 80.
x^{2}+80x-200=0
Whakareatia te 5 ki te 40, ka 200.
x^{2}+80x=200
Me tāpiri te 200 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}+80x+40^{2}=200+40^{2}
Whakawehea te 80, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 40. Nā, tāpiria te pūrua o te 40 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+80x+1600=200+1600
Pūrua 40.
x^{2}+80x+1600=1800
Tāpiri 200 ki te 1600.
\left(x+40\right)^{2}=1800
Tauwehea x^{2}+80x+1600. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+40\right)^{2}}=\sqrt{1800}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+40=30\sqrt{2} x+40=-30\sqrt{2}
Whakarūnātia.
x=30\sqrt{2}-40 x=-30\sqrt{2}-40
Me tango 40 mai i ngā taha e rua o te whārite.