Whakaoti mō x
x=30\sqrt{2}-40\approx 2.426406871
x=-30\sqrt{2}-40\approx -82.426406871
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+80x-5\times 40=0
Whakareatia te 1 ki te 80, ka 80.
x^{2}+80x-200=0
Whakareatia te 5 ki te 40, ka 200.
x=\frac{-80±\sqrt{80^{2}-4\left(-200\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 80 mō b, me -200 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-80±\sqrt{6400-4\left(-200\right)}}{2}
Pūrua 80.
x=\frac{-80±\sqrt{6400+800}}{2}
Whakareatia -4 ki te -200.
x=\frac{-80±\sqrt{7200}}{2}
Tāpiri 6400 ki te 800.
x=\frac{-80±60\sqrt{2}}{2}
Tuhia te pūtakerua o te 7200.
x=\frac{60\sqrt{2}-80}{2}
Nā, me whakaoti te whārite x=\frac{-80±60\sqrt{2}}{2} ina he tāpiri te ±. Tāpiri -80 ki te 60\sqrt{2}.
x=30\sqrt{2}-40
Whakawehe -80+60\sqrt{2} ki te 2.
x=\frac{-60\sqrt{2}-80}{2}
Nā, me whakaoti te whārite x=\frac{-80±60\sqrt{2}}{2} ina he tango te ±. Tango 60\sqrt{2} mai i -80.
x=-30\sqrt{2}-40
Whakawehe -80-60\sqrt{2} ki te 2.
x=30\sqrt{2}-40 x=-30\sqrt{2}-40
Kua oti te whārite te whakatau.
x^{2}+80x-5\times 40=0
Whakareatia te 1 ki te 80, ka 80.
x^{2}+80x-200=0
Whakareatia te 5 ki te 40, ka 200.
x^{2}+80x=200
Me tāpiri te 200 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}+80x+40^{2}=200+40^{2}
Whakawehea te 80, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 40. Nā, tāpiria te pūrua o te 40 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+80x+1600=200+1600
Pūrua 40.
x^{2}+80x+1600=1800
Tāpiri 200 ki te 1600.
\left(x+40\right)^{2}=1800
Tauwehea x^{2}+80x+1600. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+40\right)^{2}}=\sqrt{1800}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+40=30\sqrt{2} x+40=-30\sqrt{2}
Whakarūnātia.
x=30\sqrt{2}-40 x=-30\sqrt{2}-40
Me tango 40 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}