Whakaoti mō x
x = \frac{2 \sqrt{47} - 1}{5} \approx 2.54226184
x=\frac{-2\sqrt{47}-1}{5}\approx -2.94226184
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+0.4x-7.48=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-0.4±\sqrt{0.4^{2}-4\left(-7.48\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0.4 mō b, me -7.48 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.4±\sqrt{0.16-4\left(-7.48\right)}}{2}
Pūruatia 0.4 mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-0.4±\sqrt{\frac{4+748}{25}}}{2}
Whakareatia -4 ki te -7.48.
x=\frac{-0.4±\sqrt{30.08}}{2}
Tāpiri 0.16 ki te 29.92 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-0.4±\frac{4\sqrt{47}}{5}}{2}
Tuhia te pūtakerua o te 30.08.
x=\frac{4\sqrt{47}-2}{2\times 5}
Nā, me whakaoti te whārite x=\frac{-0.4±\frac{4\sqrt{47}}{5}}{2} ina he tāpiri te ±. Tāpiri -0.4 ki te \frac{4\sqrt{47}}{5}.
x=\frac{2\sqrt{47}-1}{5}
Whakawehe \frac{-2+4\sqrt{47}}{5} ki te 2.
x=\frac{-4\sqrt{47}-2}{2\times 5}
Nā, me whakaoti te whārite x=\frac{-0.4±\frac{4\sqrt{47}}{5}}{2} ina he tango te ±. Tango \frac{4\sqrt{47}}{5} mai i -0.4.
x=\frac{-2\sqrt{47}-1}{5}
Whakawehe \frac{-2-4\sqrt{47}}{5} ki te 2.
x=\frac{2\sqrt{47}-1}{5} x=\frac{-2\sqrt{47}-1}{5}
Kua oti te whārite te whakatau.
x^{2}+0.4x-7.48=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+0.4x-7.48-\left(-7.48\right)=-\left(-7.48\right)
Me tāpiri 7.48 ki ngā taha e rua o te whārite.
x^{2}+0.4x=-\left(-7.48\right)
Mā te tango i te -7.48 i a ia ake anō ka toe ko te 0.
x^{2}+0.4x=7.48
Tango -7.48 mai i 0.
x^{2}+0.4x+0.2^{2}=7.48+0.2^{2}
Whakawehea te 0.4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 0.2. Nā, tāpiria te pūrua o te 0.2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+0.4x+0.04=\frac{187+1}{25}
Pūruatia 0.2 mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+0.4x+0.04=7.52
Tāpiri 7.48 ki te 0.04 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+0.2\right)^{2}=7.52
Tauwehea x^{2}+0.4x+0.04. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0.2\right)^{2}}=\sqrt{7.52}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+0.2=\frac{2\sqrt{47}}{5} x+0.2=-\frac{2\sqrt{47}}{5}
Whakarūnātia.
x=\frac{2\sqrt{47}-1}{5} x=\frac{-2\sqrt{47}-1}{5}
Me tango 0.2 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}