Whakaoti mō x
x = \frac{75 \sqrt{34}}{34} \approx 12.862393886
x = -\frac{75 \sqrt{34}}{34} \approx -12.862393886
Graph
Tohaina
Kua tāruatia ki te papatopenga
1.36x^{2}=225
Pahekotia te x^{2} me 0.36x^{2}, ka 1.36x^{2}.
x^{2}=\frac{225}{1.36}
Whakawehea ngā taha e rua ki te 1.36.
x^{2}=\frac{22500}{136}
Whakarohaina te \frac{225}{1.36} mā te whakarea i te taurunga me te tauraro ki te 100.
x^{2}=\frac{5625}{34}
Whakahekea te hautanga \frac{22500}{136} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{75\sqrt{34}}{34} x=-\frac{75\sqrt{34}}{34}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
1.36x^{2}=225
Pahekotia te x^{2} me 0.36x^{2}, ka 1.36x^{2}.
1.36x^{2}-225=0
Tangohia te 225 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 1.36\left(-225\right)}}{2\times 1.36}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1.36 mō a, 0 mō b, me -225 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 1.36\left(-225\right)}}{2\times 1.36}
Pūrua 0.
x=\frac{0±\sqrt{-5.44\left(-225\right)}}{2\times 1.36}
Whakareatia -4 ki te 1.36.
x=\frac{0±\sqrt{1224}}{2\times 1.36}
Whakareatia -5.44 ki te -225.
x=\frac{0±6\sqrt{34}}{2\times 1.36}
Tuhia te pūtakerua o te 1224.
x=\frac{0±6\sqrt{34}}{2.72}
Whakareatia 2 ki te 1.36.
x=\frac{75\sqrt{34}}{34}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{34}}{2.72} ina he tāpiri te ±.
x=-\frac{75\sqrt{34}}{34}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{34}}{2.72} ina he tango te ±.
x=\frac{75\sqrt{34}}{34} x=-\frac{75\sqrt{34}}{34}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}