Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1.36x^{2}=225
Pahekotia te x^{2} me 0.36x^{2}, ka 1.36x^{2}.
x^{2}=\frac{225}{1.36}
Whakawehea ngā taha e rua ki te 1.36.
x^{2}=\frac{22500}{136}
Whakarohaina te \frac{225}{1.36} mā te whakarea i te taurunga me te tauraro ki te 100.
x^{2}=\frac{5625}{34}
Whakahekea te hautanga \frac{22500}{136} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{75\sqrt{34}}{34} x=-\frac{75\sqrt{34}}{34}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
1.36x^{2}=225
Pahekotia te x^{2} me 0.36x^{2}, ka 1.36x^{2}.
1.36x^{2}-225=0
Tangohia te 225 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 1.36\left(-225\right)}}{2\times 1.36}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1.36 mō a, 0 mō b, me -225 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 1.36\left(-225\right)}}{2\times 1.36}
Pūrua 0.
x=\frac{0±\sqrt{-5.44\left(-225\right)}}{2\times 1.36}
Whakareatia -4 ki te 1.36.
x=\frac{0±\sqrt{1224}}{2\times 1.36}
Whakareatia -5.44 ki te -225.
x=\frac{0±6\sqrt{34}}{2\times 1.36}
Tuhia te pūtakerua o te 1224.
x=\frac{0±6\sqrt{34}}{2.72}
Whakareatia 2 ki te 1.36.
x=\frac{75\sqrt{34}}{34}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{34}}{2.72} ina he tāpiri te ±.
x=-\frac{75\sqrt{34}}{34}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{34}}{2.72} ina he tango te ±.
x=\frac{75\sqrt{34}}{34} x=-\frac{75\sqrt{34}}{34}
Kua oti te whārite te whakatau.