Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+0-36
Ko te tau i whakarea ki te kore ka hua ko te kore.
x^{2}-36
Tangohia te 36 i te 0, ka -36.
x^{2}-36
Whakarea ka paheko i ngā kīanga tau ōrite.
\left(x-6\right)\left(x+6\right)
Tuhia anō te x^{2}-36 hei x^{2}-6^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x^{2}-36=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-36\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{0±\sqrt{-4\left(-36\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{144}}{2}
Whakareatia -4 ki te -36.
x=\frac{0±12}{2}
Tuhia te pūtakerua o te 144.
x=6
Nā, me whakaoti te whārite x=\frac{±12}{2} ina he tāpiri te ±. Whakawehe 12 ki te 2.
x=-6
Nā, me whakaoti te whārite x=\frac{±12}{2} ina he tango te ±. Whakawehe -12 ki te 2.
x^{2}-36=\left(x-6\right)\left(x-\left(-6\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 6 mō te x_{1} me te -6 mō te x_{2}.
x^{2}-36=\left(x-6\right)\left(x+6\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.