Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-10x+20=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 20}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 20}}{2}
Pūrua -10.
x=\frac{-\left(-10\right)±\sqrt{100-80}}{2}
Whakareatia -4 ki te 20.
x=\frac{-\left(-10\right)±\sqrt{20}}{2}
Tāpiri 100 ki te -80.
x=\frac{-\left(-10\right)±2\sqrt{5}}{2}
Tuhia te pūtakerua o te 20.
x=\frac{10±2\sqrt{5}}{2}
Ko te tauaro o -10 ko 10.
x=\frac{2\sqrt{5}+10}{2}
Nā, me whakaoti te whārite x=\frac{10±2\sqrt{5}}{2} ina he tāpiri te ±. Tāpiri 10 ki te 2\sqrt{5}.
x=\sqrt{5}+5
Whakawehe 10+2\sqrt{5} ki te 2.
x=\frac{10-2\sqrt{5}}{2}
Nā, me whakaoti te whārite x=\frac{10±2\sqrt{5}}{2} ina he tango te ±. Tango 2\sqrt{5} mai i 10.
x=5-\sqrt{5}
Whakawehe 10-2\sqrt{5} ki te 2.
x^{2}-10x+20=\left(x-\left(\sqrt{5}+5\right)\right)\left(x-\left(5-\sqrt{5}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 5+\sqrt{5} mō te x_{1} me te 5-\sqrt{5} mō te x_{2}.