Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+x^{2}-4x+4=100
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
2x^{2}-4x+4=100
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-4x+4-100=0
Tangohia te 100 mai i ngā taha e rua.
2x^{2}-4x-96=0
Tangohia te 100 i te 4, ka -96.
x^{2}-2x-48=0
Whakawehea ngā taha e rua ki te 2.
a+b=-2 ab=1\left(-48\right)=-48
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-48. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-48 2,-24 3,-16 4,-12 6,-8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -48.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
Tātaihia te tapeke mō ia takirua.
a=-8 b=6
Ko te otinga te takirua ka hoatu i te tapeke -2.
\left(x^{2}-8x\right)+\left(6x-48\right)
Tuhia anō te x^{2}-2x-48 hei \left(x^{2}-8x\right)+\left(6x-48\right).
x\left(x-8\right)+6\left(x-8\right)
Tauwehea te x i te tuatahi me te 6 i te rōpū tuarua.
\left(x-8\right)\left(x+6\right)
Whakatauwehea atu te kīanga pātahi x-8 mā te whakamahi i te āhuatanga tātai tohatoha.
x=8 x=-6
Hei kimi otinga whārite, me whakaoti te x-8=0 me te x+6=0.
x^{2}+x^{2}-4x+4=100
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
2x^{2}-4x+4=100
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-4x+4-100=0
Tangohia te 100 mai i ngā taha e rua.
2x^{2}-4x-96=0
Tangohia te 100 i te 4, ka -96.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-96\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -4 mō b, me -96 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-96\right)}}{2\times 2}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-96\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-4\right)±\sqrt{16+768}}{2\times 2}
Whakareatia -8 ki te -96.
x=\frac{-\left(-4\right)±\sqrt{784}}{2\times 2}
Tāpiri 16 ki te 768.
x=\frac{-\left(-4\right)±28}{2\times 2}
Tuhia te pūtakerua o te 784.
x=\frac{4±28}{2\times 2}
Ko te tauaro o -4 ko 4.
x=\frac{4±28}{4}
Whakareatia 2 ki te 2.
x=\frac{32}{4}
Nā, me whakaoti te whārite x=\frac{4±28}{4} ina he tāpiri te ±. Tāpiri 4 ki te 28.
x=8
Whakawehe 32 ki te 4.
x=-\frac{24}{4}
Nā, me whakaoti te whārite x=\frac{4±28}{4} ina he tango te ±. Tango 28 mai i 4.
x=-6
Whakawehe -24 ki te 4.
x=8 x=-6
Kua oti te whārite te whakatau.
x^{2}+x^{2}-4x+4=100
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
2x^{2}-4x+4=100
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-4x=100-4
Tangohia te 4 mai i ngā taha e rua.
2x^{2}-4x=96
Tangohia te 4 i te 100, ka 96.
\frac{2x^{2}-4x}{2}=\frac{96}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{4}{2}\right)x=\frac{96}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-2x=\frac{96}{2}
Whakawehe -4 ki te 2.
x^{2}-2x=48
Whakawehe 96 ki te 2.
x^{2}-2x+1=48+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=49
Tāpiri 48 ki te 1.
\left(x-1\right)^{2}=49
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{49}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=7 x-1=-7
Whakarūnātia.
x=8 x=-6
Me tāpiri 1 ki ngā taha e rua o te whārite.