Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+x^{2}+10x+25=25^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+5\right)^{2}.
2x^{2}+10x+25=25^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+10x+25=625
Tātaihia te 25 mā te pū o 2, kia riro ko 625.
2x^{2}+10x+25-625=0
Tangohia te 625 mai i ngā taha e rua.
2x^{2}+10x-600=0
Tangohia te 625 i te 25, ka -600.
x^{2}+5x-300=0
Whakawehea ngā taha e rua ki te 2.
a+b=5 ab=1\left(-300\right)=-300
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-300. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,300 -2,150 -3,100 -4,75 -5,60 -6,50 -10,30 -12,25 -15,20
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -300.
-1+300=299 -2+150=148 -3+100=97 -4+75=71 -5+60=55 -6+50=44 -10+30=20 -12+25=13 -15+20=5
Tātaihia te tapeke mō ia takirua.
a=-15 b=20
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(x^{2}-15x\right)+\left(20x-300\right)
Tuhia anō te x^{2}+5x-300 hei \left(x^{2}-15x\right)+\left(20x-300\right).
x\left(x-15\right)+20\left(x-15\right)
Tauwehea te x i te tuatahi me te 20 i te rōpū tuarua.
\left(x-15\right)\left(x+20\right)
Whakatauwehea atu te kīanga pātahi x-15 mā te whakamahi i te āhuatanga tātai tohatoha.
x=15 x=-20
Hei kimi otinga whārite, me whakaoti te x-15=0 me te x+20=0.
x^{2}+x^{2}+10x+25=25^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+5\right)^{2}.
2x^{2}+10x+25=25^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+10x+25=625
Tātaihia te 25 mā te pū o 2, kia riro ko 625.
2x^{2}+10x+25-625=0
Tangohia te 625 mai i ngā taha e rua.
2x^{2}+10x-600=0
Tangohia te 625 i te 25, ka -600.
x=\frac{-10±\sqrt{10^{2}-4\times 2\left(-600\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 10 mō b, me -600 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 2\left(-600\right)}}{2\times 2}
Pūrua 10.
x=\frac{-10±\sqrt{100-8\left(-600\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-10±\sqrt{100+4800}}{2\times 2}
Whakareatia -8 ki te -600.
x=\frac{-10±\sqrt{4900}}{2\times 2}
Tāpiri 100 ki te 4800.
x=\frac{-10±70}{2\times 2}
Tuhia te pūtakerua o te 4900.
x=\frac{-10±70}{4}
Whakareatia 2 ki te 2.
x=\frac{60}{4}
Nā, me whakaoti te whārite x=\frac{-10±70}{4} ina he tāpiri te ±. Tāpiri -10 ki te 70.
x=15
Whakawehe 60 ki te 4.
x=-\frac{80}{4}
Nā, me whakaoti te whārite x=\frac{-10±70}{4} ina he tango te ±. Tango 70 mai i -10.
x=-20
Whakawehe -80 ki te 4.
x=15 x=-20
Kua oti te whārite te whakatau.
x^{2}+x^{2}+10x+25=25^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+5\right)^{2}.
2x^{2}+10x+25=25^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+10x+25=625
Tātaihia te 25 mā te pū o 2, kia riro ko 625.
2x^{2}+10x=625-25
Tangohia te 25 mai i ngā taha e rua.
2x^{2}+10x=600
Tangohia te 25 i te 625, ka 600.
\frac{2x^{2}+10x}{2}=\frac{600}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{10}{2}x=\frac{600}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+5x=\frac{600}{2}
Whakawehe 10 ki te 2.
x^{2}+5x=300
Whakawehe 600 ki te 2.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=300+\left(\frac{5}{2}\right)^{2}
Whakawehea te 5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{2}. Nā, tāpiria te pūrua o te \frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+5x+\frac{25}{4}=300+\frac{25}{4}
Pūruatia \frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+5x+\frac{25}{4}=\frac{1225}{4}
Tāpiri 300 ki te \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{1225}{4}
Tauwehea x^{2}+5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1225}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{2}=\frac{35}{2} x+\frac{5}{2}=-\frac{35}{2}
Whakarūnātia.
x=15 x=-20
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.