Whakaoti mō x (complex solution)
x=\frac{\sqrt{6}i}{2}-2\approx -2+1.224744871i
x=-\frac{\sqrt{6}i}{2}-2\approx -2-1.224744871i
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
x ^ { 2 } + ( x + 2 ) ^ { 2 } + 4 ( x + 2 ) - 1 = 0
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+x^{2}+4x+4+4\left(x+2\right)-1=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
2x^{2}+4x+4+4\left(x+2\right)-1=0
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+4x+4+4x+8-1=0
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+2.
2x^{2}+8x+4+8-1=0
Pahekotia te 4x me 4x, ka 8x.
2x^{2}+8x+12-1=0
Tāpirihia te 4 ki te 8, ka 12.
2x^{2}+8x+11=0
Tangohia te 1 i te 12, ka 11.
x=\frac{-8±\sqrt{8^{2}-4\times 2\times 11}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 8 mō b, me 11 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 2\times 11}}{2\times 2}
Pūrua 8.
x=\frac{-8±\sqrt{64-8\times 11}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-8±\sqrt{64-88}}{2\times 2}
Whakareatia -8 ki te 11.
x=\frac{-8±\sqrt{-24}}{2\times 2}
Tāpiri 64 ki te -88.
x=\frac{-8±2\sqrt{6}i}{2\times 2}
Tuhia te pūtakerua o te -24.
x=\frac{-8±2\sqrt{6}i}{4}
Whakareatia 2 ki te 2.
x=\frac{-8+2\sqrt{6}i}{4}
Nā, me whakaoti te whārite x=\frac{-8±2\sqrt{6}i}{4} ina he tāpiri te ±. Tāpiri -8 ki te 2i\sqrt{6}.
x=\frac{\sqrt{6}i}{2}-2
Whakawehe -8+2i\sqrt{6} ki te 4.
x=\frac{-2\sqrt{6}i-8}{4}
Nā, me whakaoti te whārite x=\frac{-8±2\sqrt{6}i}{4} ina he tango te ±. Tango 2i\sqrt{6} mai i -8.
x=-\frac{\sqrt{6}i}{2}-2
Whakawehe -8-2i\sqrt{6} ki te 4.
x=\frac{\sqrt{6}i}{2}-2 x=-\frac{\sqrt{6}i}{2}-2
Kua oti te whārite te whakatau.
x^{2}+x^{2}+4x+4+4\left(x+2\right)-1=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
2x^{2}+4x+4+4\left(x+2\right)-1=0
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+4x+4+4x+8-1=0
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+2.
2x^{2}+8x+4+8-1=0
Pahekotia te 4x me 4x, ka 8x.
2x^{2}+8x+12-1=0
Tāpirihia te 4 ki te 8, ka 12.
2x^{2}+8x+11=0
Tangohia te 1 i te 12, ka 11.
2x^{2}+8x=-11
Tangohia te 11 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{2x^{2}+8x}{2}=-\frac{11}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{8}{2}x=-\frac{11}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+4x=-\frac{11}{2}
Whakawehe 8 ki te 2.
x^{2}+4x+2^{2}=-\frac{11}{2}+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4x+4=-\frac{11}{2}+4
Pūrua 2.
x^{2}+4x+4=-\frac{3}{2}
Tāpiri -\frac{11}{2} ki te 4.
\left(x+2\right)^{2}=-\frac{3}{2}
Tauwehea x^{2}+4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-\frac{3}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2=\frac{\sqrt{6}i}{2} x+2=-\frac{\sqrt{6}i}{2}
Whakarūnātia.
x=\frac{\sqrt{6}i}{2}-2 x=-\frac{\sqrt{6}i}{2}-2
Me tango 2 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}